Observer Two
- 24
- 0
I'm doing something horribly wrong in something that should be very easy. I want to show that:
[L^2, x^2] = 0
So:
[L^2, x x] = [L^2, x] x + x [L^2, x]
L^2 = L_x^2 + L_y^2 + L_z^2
Therefore: [L^2, x] = [L_x^2 + L_y^2 + L_z^2, x] = [L_x^2, x] + [L_y^2, x] + [L_z^2, x]
= L_y [L_y, x] + [L_y, x] L_y + L_z [L_z, x] + [L_z, x] L_z
= -i h L_y z - ih z L_y + i h L_z y + i h y L_z
So
[L^2, x x] = -i h L_y z x - ih z L_y x + i h L_z y x + i h y L_z x<br /> + -i h x L_y z - ih x z L_y + i h x L_z y + i h x y L_z
And now?
This ought to be a lot easier.
[L^2, x^2] = 0
So:
[L^2, x x] = [L^2, x] x + x [L^2, x]
L^2 = L_x^2 + L_y^2 + L_z^2
Therefore: [L^2, x] = [L_x^2 + L_y^2 + L_z^2, x] = [L_x^2, x] + [L_y^2, x] + [L_z^2, x]
= L_y [L_y, x] + [L_y, x] L_y + L_z [L_z, x] + [L_z, x] L_z
= -i h L_y z - ih z L_y + i h L_z y + i h y L_z
So
[L^2, x x] = -i h L_y z x - ih z L_y x + i h L_z y x + i h y L_z x<br /> + -i h x L_y z - ih x z L_y + i h x L_z y + i h x y L_z
And now?
This ought to be a lot easier.