I am attempting to find a matrix A so that the definition of differentiability (in higher dimensions) holds...but I cannot seem to do so because I cannot cancel out the absolute value of h depending on whether h is negative or positive. Is this the right direction?
Sorry, I am not even sure which definition/theorem of differentiability I should use, since I have only learned of the definition and the C1 condition, but this function isn't even C1.
EDIT: Do I use the sgn(x) function? f(x,y) = |xy| = |x||y|. So the partial derivatives are x|y|/|x| and y|x|/|y|, unless x, y are zero, in which case the partial derivatives are 0. So then the partial derivatives exist. But they are still not continuous at 0...