Mechdude
- 108
- 1
Homework Statement
\int_{\pi/2}^{\infty}cos(t)e^{-st}dt
Homework Equations
\int vdu=uv-\int udvv=cos(t) , dv=-sin(t)dt, du=e^{-st} , u=\frac{-e^{-st}} {s}
The Attempt at a Solution
\int_{\pi/2}^{\infty}cos(t)e^{-st}dt = \frac{-e^{-st}}{s}cos(t) -\int (-)\frac{-e^{-st}}{s}(-)sin(t)dt
the right side becomes:
\frac{-e^{-st}}{s}cos(t) - \frac{1}{s} \int e^{-st}sin(t)dt
for the second integral on the right:v=sin(t) , dv=cos(t)dt and du=e^{-st} , u=\frac{-e^{-st}} {s}
\int e^{-st}sin(t)dt =- \frac{1}{s}e^{-st}sin(t)dt - \int \frac{-e^{-st}}{s}cos(t)
now \int_{\pi/2}^{\infty}cos(t)e^{-st}dt = \frac{-e^{-st}}{s}cos(t) - \frac {1}{s} \left[ - \frac{1}{s}e^{-st}sin(t) + \int \frac{e^{-st}}{s}cos(t)dt \right]
thus
\frac{-e^{-st}}{s}cos(t) + \frac {1}{s^2}e^{-st}sin(t) - \frac {1}{s^2} \int e^{-st}cos(t)dt
simplifying
\int_{\pi/2}^{\infty}cos(t)e^{-st}dt \frac {s^2 +1} {s^2}= \frac {1}{s^2}e^{-st}sin(t) - \frac{e^{-st}}{s}cos(t)
going on :
\int_{\pi/2}^{\infty}cos(t)e^{-st}dt = \frac {s^2}{s^2 +1} \left[ \frac {1}{s^2}e^{-st}sin(t) - \frac{e^{-st}}{s}cos(t) \right]
the right side is:
= \frac {1}{s^2 +1}e^{-st}sin(t) + \frac{e^{-st}}{s^2+1}scos(t)
now when i evaluate the limits:
=(0-0) - ( \frac{e^{-s\pi/2}}{s^2+1} - 0 )
=- \frac{e^{-s\pi/2}}{s^2+1}
im sure this is wrong because of the sign (its supposed to be positive now where did i drop the sign? can u help? this was the function whose transform i was looking for
<br /> f(x)=\left\{\begin{array}{cc}0,&\mbox{ if }0\leq x\leq \pi/2 \\<br /> cos(t), & \mbox{ if } x>\pi/2 \end{array}\right.<br />
Last edited: