Angello90
- 65
- 0
From the lecture notes:
h[n] = \frac{1}{2}(\delta[n] + delta[n-1])
via property:
H(e^{j\Omega})=\sum_{-\infty}^{\infty}h[k]e^{-j\Omega k}
becomes:
H(e^{j\Omega})= \frac{1}{2}(1 + e^{-j\Omega})
than my lecture divided by e^{\frac{-j\Omega}{2}} resulting in:
H(e^{j\Omega})= e^{\frac{-j\Omega}{2}}[(e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2]
Now he changed (e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2 to cos(\frac{\Omega}{2})
How? Can anyone explain me? Also why \delta[n] is 1 but delta[n-1] is e^{\frac{-j \Omega}{2}}?
h[n] = \frac{1}{2}(\delta[n] + delta[n-1])
via property:
H(e^{j\Omega})=\sum_{-\infty}^{\infty}h[k]e^{-j\Omega k}
becomes:
H(e^{j\Omega})= \frac{1}{2}(1 + e^{-j\Omega})
than my lecture divided by e^{\frac{-j\Omega}{2}} resulting in:
H(e^{j\Omega})= e^{\frac{-j\Omega}{2}}[(e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2]
Now he changed (e^{\frac{j\Omega}{2}} + e^{\frac{-j\Omega}{2}})/2 to cos(\frac{\Omega}{2})
How? Can anyone explain me? Also why \delta[n] is 1 but delta[n-1] is e^{\frac{-j \Omega}{2}}?