B Significance of the Planck Particle

Nathan Warford
Messages
23
Reaction score
1
Taken from the Wikipedia page:
A Planck particle, named after physicist Max Planck, is a hypothetical particle defined as a tiny black hole whose Compton wavelength is equal to its Schwarzschild radius.
Is there something significant about the physics of the Planck Particle or its properties? If so, then what is the significance? If there's nothing especially significant about the Planck Particle, then you can just say "No" and I will consider the matter closed. But if there is some significance, I am curious to know what that would be.
 
Physics news on Phys.org
Many of the Planck units are defined as the scales where a full theory of quantum gravity is needed to describe the physics at those scales. Similarly, a hypothetical black hole with that mass/radius would require a fully quantum mechanical theory of gravity to predict its behavior. So you could say that describing "Planck particles" is the goal of quantum gravitists.

(I will admit that I've never heard the term "Planck particle" before, but the notion of a Planck mass black hole as being an object which requires quantum gravity is common.)
 
king vitamin said:
So you could say that describing "Planck particles" is the goal of quantum gravitists.
It sounds like a quantum theory of gravity would help to describe the Planck particle's properties, as opposed to the of the Planck particle's properties leading to a quantum theory of gravity. That would lead me to think that calculating the properties of a Planck particle is more of a mathematical curiosity than something significant about the object, except for what you said later in your response.
king vitamin said:
the notion of a Planck mass black hole as being an object which requires quantum gravity is common.
It sounds like it is something more significant than simply a mathematical curiosity. What are some examples in physics that involve the idea of a Planck mass black hole?
 
Well there are no experimental signatures of a Planck-sized black hole ever existing, so anything we could attempt to deduce about them theoretically cannot be compared to anything empirical. In fact, it may be the case that we will never be able to empirically observe such objects.

But we could get lucky and see such objects, say by looking at leftovers from the Big Bang, or if there is some extraordinarily high-energy event which occurs in our universe which we could detect. Hypothetically speaking, if we could do experiments between fundamental particles at the Planck scale, we should be able to produce these "Planck particles," but the notion of being able to do so seems rather far-fetched currently.
 
Wouldnt Planck particle be the fundamental volume of space "lattice"?
 
rekoj said:
Wouldnt Planck particle be the fundamental volume of space "lattice"?

I see no reason why that would have to be true in general, nor am I aware of any existing theory where that is true.
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...
Back
Top