hoch449
- 13
- 0
Homework Statement
I am supposed to find if the following commutes: [Lx,Ly]
Homework Equations
Lx= -i\hbar[y(\partial/\partialz) - z(\partial/\partialy)]
Ly= -i\hbar[z(\partial/\partialx) - x(\partial/\partialz)]
where [Lx,Ly]=LxLy-LyLx
If it commutes then [Lx,Ly]=0
The Attempt at a Solution
[Lx,Ly]= (i\hbar)2{[y(\partial/\partialz) - z(\partial/\partialy)[z(\partial/\partialx) - x(\partial/\partialz)]}
After expanding this I got a result of 0. So my solution concluded that they commute.
The answer however is [Lx,Ly]= i\hbarLx
I clearly expanded it wrong. I was hoping if anyone could explain how they expanded the LxLy-LyLx part. In my calculations I cannot seem to figure out how the answer contains a few more parts in the expansion which results in a non-commutation..
Thanks!