- 5

- 0

**1. Homework Statement**

A block mass M slides down the side of a frictionless circle Radius R. At an angle Theta the mass M flies off the circle, what is the angle?

**2. Homework Equations**

PE(top) = KE(point it flies off) + PE(at that point)

Arad = V^2 / R

Sum Of Forces = Mass * Acceleration

**3. The Attempt at a Solution**

Okay I actually did this one before and I was trying to do it again but somehow I don't seem to be able to get it. The answer was Inverse Cosine of 1/1.5 or 48 degrees.

The problem was done with energy equations

PE(top) = KE(point) + PE(point)

I set 0 PE to be the middle of the circle so

mgR = .5 mv^2 + mg(Rcos(theta))

mass cancels

gR = .5v^2 + gRcos(theta)

I think I'm going wrong here but I said the only force acting on the block is weight or mg, because at the point is leaves the normal force goes to 0.

so sum forces = mass * acceleration

mg = ma

mass cancels

g = a

then v^2 / R = a , so gR = V^2

then plugging that in

gR = .5v^2 + gRcos(theta)

gR = .5gR + gR cos(theta)

gR cancels

1 = .5 + cos(theta)

and I end up with 60 degrees so I think I missed out a number somewhere but I don't know where.