What is the mistake in this attempt to prove \sum {\frac{x^n}{n}} = -ln(1-x)?

talolard
Messages
119
Reaction score
0

Homework Statement



I am trying to show that \sum{ \frac{x^n}{n}} = -ln(1-x)
But I am doing something wrong and I can't find my mistake.
Please find my mistake and let me know what it is.
Thanks

The Attempt at a Solution


set f(x)=\sum {\frac{x^n}{n}}
then f'(x)= \sum {x^n-1}
so xf'(x)=\sum{x^n} = \frac {1}{1-x}
which means that f'(x)=\frac {1}{x} - \frac{1}{1-x}
integrtang we get f(x)=ln|x|-ln|1-x|
which is bad






 
Physics news on Phys.org
The derivative of the function is:

f'(x)=Sum[x^(n-1),{n,1,Infinity}]

which is the same as:

f'(x) = Sum[x^(n),{n,0,Infinity}] = 1/(1-x)

Integrating:

Sum[x^(n+1)/(n+1),{n,0,Infinity}] = - ln(1-x)

which is the same as:

Sum[x^(n)/n,{n,1,Infinity}] = -ln(1-x).

The trick lies in repositioning the starting index.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top