Simple Harmonic Motion Question

AI Thread Summary
The discussion revolves around confirming that x = Asin(wt + f) is a solution to the simple harmonic motion (SHM) equation and establishing the relationship between the spring constant (k), mass (m), and angular frequency (w). Participants differentiate the SHM equation and explore the forces acting on the mass, including gravitational force and restoring force. They clarify that the net force can be expressed using Newton's second law, leading to the conclusion that k = mw^2 for both horizontal and vertical spring orientations. The conversation emphasizes the importance of understanding the underlying physics principles to derive these relationships accurately.
theneedtoknow
Messages
169
Reaction score
0

Homework Statement



A weight of mass m is placed on a string. as a result it exerts a force equal to xk that tends to reduce x, where k is the spring constand and x is the distance from the equilibrium position of the spring.

1. Confirm that x = Asin(wt+ f) is indeed a solution of theequation of SHM. (given below)
2. Write down the relationship between k, m, and w^2.

Homework Equations



d^2 / dt ^ 2 = -w^2 * x




The Attempt at a Solution



1. Well i got this part by differentiating x = Asin(wt+f) and indeed it is a solution
2.

I have no idea how to do this part...
All i can think of is that at the peaks and troughs of oscillation a is zero so the forces mg and xk must be equal but that doesn't really help me relate them in general
 
Physics news on Phys.org
Think in terms of Newton's second law of motion.
 
Well I'm tryin to...but not sure how...
Fnet = mg + xk = ma

(ma - mg) / k = x


well this is tthe relationship between m and k and... I doubt its even right... and i have no idea how to go to relate to w^2 of all things
 
How did the mg come in?

Anyway, Fnet is also equal to m(d2x/dt2).
 
d^x / dt^2 = a(t) right?
so would it be f = ma
so Fnet = m * d^2/dt^2?

crap, i misread the first time lol
 
Last edited:
theneedtoknow said:
Well isn't mg the force of gravity on the mass?
So the enet force would be force of gravity + resporing force Fnet = mg + xk

It is not mentioned that the spring is hanging vertically. You must therefore assume that is placed on a smooth horizontal surface. In that case, the force due to gravity and the normal force due to the surface cancel each other.


And how come Fnet = d^2/dt^2? I am missing the link between the two , can you help me out to relate them?
Please look at the equation I typed once more. If it is still not clear, read your textbook (on Newton's second law).

cause if Fnet is indeed equal to that, then the relationship should be

mg + xk = -w^2x and then i guess the final relationship between those would be

k = (-w^2x - mg )/x
m = (-w^2x - xk ) / g
w^2 = (-mg - xk )/ x

or...no?
No.
 
OK so then for a horizontal string :
kx = -mw^2x
so they are related by

k = -mw^2 (i think)

But can you help me figure out what the answer would be with a vertical spring as well cause now I am curious...
Would it be mg + xk = -mw^2x?
 
theneedtoknow said:
OK so then for a horizontal string :
kx = -mw^2x

There is a rather important detail missing.


But can you help me figure out what the answer would be with a vertical spring as well cause now I am curious...
Would it be mg + xk = -mw^2x?
Again, the same detail is missing here. But as it turns out, the relation between these three quantities (omega, k and m) is the same no matter how the spring is oriented. This of course assumes ideal conditions, such as a negligible mass for the spring, etc.
 
is it that its a restorive force so it shud be k = mw^2?
 
  • #10
theneedtoknow said:
is it that its a restorive force so it shud be k = mw^2?

Exactly.
 
  • #11
ahhh excellent thanks a lot for all the help
 
Back
Top