Simple minimum/maximum question

  • Thread starter Thread starter DeanBH
  • Start date Start date
AI Thread Summary
The discussion centers on finding the minimum point of the quadratic function y = x^2 + 10x + 19, which can be rewritten as y = (x + 5)^2 - 6. The minimum occurs at the vertex of the parabola, where the x-value is -5 (the opposite sign of +5) and the y-value is -6. The graph opens upwards, indicating there is no maximum point, as it continues to rise indefinitely. If the equation were to represent a downward-opening parabola, the maximum could be determined similarly. Understanding the vertex form of a quadratic is crucial for identifying minimum and maximum values.
DeanBH
Messages
82
Reaction score
0
I did a past paper question whereby I carried the answer (X+5)-6 through.

it then asked for the minimum points of the graph y=x^2 + 10x + 19. which is what i made into (X+5)-6.

I know i have to take the +5 and change its sign to -. and that's the minimum of X. and the -6 without change is the minimum of Y.


I just wondered, can anyone explain to me why this is so?


Furthermore, what would I do if it asked for a maximum. I would show an attempt, but i don't even understand why this is a minimum so it's hard for me to find out the maximum.
( this isn't actually a question I'm just interested.)


thanks :P
 
Physics news on Phys.org
DeanBH said:
I did a past paper question whereby I carried the answer (X+5)-6 through.

it then asked for the minimum points of the graph y=x^2 + 10x + 19. which is what i made into (X+5)-6.
I presume you mean (x+5)2- 6.

I know i have to take the +5 and change its sign to -. and that's the minimum of X. and the -6 without change is the minimum of Y.


I just wondered, can anyone explain to me why this is so?


Furthermore, what would I do if it asked for a maximum. I would show an attempt, but i don't even understand why this is a minimum so it's hard for me to find out the maximum.
( this isn't actually a question I'm just interested.)


thanks :P
A square is never negative. If y= (x- 5)2- 6, It is always "-6 plus something". If x- 5= 0, which is the same as x= 5 (adding 5 to both sides. I cringe when I read somenthing like "take the+ 5 and change its sign to -"!), y= 0- 6= -6. For any other x, x- 5 is non-zero, (x- 6)2 is positive and (x- 5)2- 6 is larger that 6.

If the problem asked for a maximum, there is something wrong with the problem! The graph of y= (x- 5)2- 6 is a parabola that opens upward: its "vertex" is at the lowest point (5, -6). There is no highest point.

However, if the problem were y= -(x- 5)2- 6 (that's the same as y= x2+ 10 x+ 31), then you can argue that when x= 5, y= -02+ 31= 31 but for any other value of x, y= -(a positive number)+ 31 and so is less than 31. In this case, the graph is a parabola that opens downward. (5, 31) is the highest point on the parabola and 31 is the maximum value of y.
 
Can anyone tell me how i find the line of symmetry of this curve, and why it is that 8D
 
Do you know the definition of "line of symmetry"?
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top