trickae
- 82
- 0
Homework Statement
Find a transfer function: \frac{V_o(s)}{V_i(s)} = \frac{Z_2 (s)}{-Z_1(s)}
Homework Equations
Z_1(s) = R_1 + \frac{1}{C_1s}
Z_2(s) = \frac {\frac{R_2}{C_2s}}{R_2 + \frac{1}{C_2s}}final solution should be:
G(s) = \frac{V_o(s)}{V_i(s)} = \frac{C_1C_2R_1R_2s^2 + (C_2R_2 + C_1R_2 + C_1R_1)s + 1}{C_1C_2R_1R_2s^2 + (C_1R_1 + C_2R_2)s + 1}
The Attempt at a Solution
- Give me a second I'm still typing up the latex commands
G(s) = \frac{V_o(s)}{V_i(s)}= \frac{-\frac {\frac{R_2}{C_2s}}{R_2 + \frac{1}{C_2s}}}{R_1 + \frac{1}{C_1s}}
= -\frac {\frac{R_2}{C_2s}}{(R_2 + \frac{1}{C_2s})(R_1 + \frac{1}{C_1s}) }
= \frac{-R_2}{(C_2s)(R_2 + \frac{1}{C_2s})(R_1 + \frac{1}{C_1s})}
= \frac{-R_2(C_1C_2s)}{(C_2s)(C_1C_2R_1R_2s^2 + (C_1R_1 + C_2R_2)s + 1)}
=\frac{-R_2(C_1)}{(C_1C_2R_1R_2s^2 + (C_1R_1 + C_2R_2)s + 1)}
which is no where near the solution.
Last edited: