Simplify $ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1)$

  • Thread starter Thread starter walker242
  • Start date Start date
  • Tags Tags
    Simplify
walker242
Messages
12
Reaction score
0

Homework Statement


As in title, simplify ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1), x > 0.


Homework Equations


-


The Attempt at a Solution


So far
ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1) = ln(x(\sqrt{1+e^x}-\sqrt{e^x})(\sqrt{1+e^{-x}}+1)) = ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x})).

Is it possible to get further?
 
Physics news on Phys.org
I worked it through and ended with what you have. I don't see anything more you can do.
 
Thanks. :)
 
Actually, it's possible to get further:

\ln \left(x \left(\sqrt{1+e^{x}}-\sqrt{e^{x}}\right) + \ln\left(\sqrt{1+e^{-x}}+1 \right) =<br /> \ln x + \ln\left(\sqrt{1+e^{x}}-\sqrt{e^{x}}\right) + \ln\left(\sqrt{1+e^{-x}}+1\right) =

= \ln x + \ln\left(\left(\sqrt{1+e^{x}}-\sqrt{e^x}\right) \left(\sqrt{1+e^{-x}} + 1\right)\right)<br /> = \ln x + \ln\left(\sqrt{1+e^{x}}\sqrt{1+e^{-x}}+\sqrt{1+e^{x}}-\sqrt{e^{x}}\sqrt{1+e^{-x}}-\sqrt{e^x}\right)

= \ln x + \ln\left(\left(\left(1+e^{x}\right)\left(1+e^{-x}\right)\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}}-\left(\left(e^{x}\right)\left(1+e^{-x}\right)\right)^{\frac{1}{2}}-\left(e^{x}\right)^{\frac{1}{2}}\right) = \ln x + \ln\left(\left(1+e^{-x}+e^{x}+e^{0}\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}} - \left(e^{x}+e^{0}\right)^{\frac{1}{2}}-\left(e^{x}\right)^{\frac{1}{2}}\right)

= \ln x + \ln\left(\left(2+e^{-x}+e^{x}\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}} - \left(e^{x}+1\right)^{\frac{1}{2}} -\left(e^{x}\right)^{\frac{1}{2}}\right)<br /> = \ln x + \ln\left(\sqrt{\left(2 + e^{-x} + e^{x}\right)} - \sqrt{\left(e^{x}\right)}\right)

= \ln x + \ln\left(\sqrt{\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right)^2} - \sqrt{e^x}\right) = \ln x + \ln\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}} - e^\frac{x}{2}\right)<br /> = \ln x + \ln\left(e^{-\frac{x}{2}}\right) = \ln \left(\frac{x}{e^\frac{x}{2}}\right)
 
You're right. It's also possible to get to your result with much less work.
Here's where the OP ended.
ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x}))
The expression in the first radical happens to be a perfect square trinomial, something I didn't notice earlier.


2+e^{-x} + e^{x} = e^{x} + 2 + e^{-x} = (e^{x/2} + e^{-x/2})^2
The expression being squared is always positive, so we don't have to worry about the negative square root. IOW,
\sqrt{e^{x} + 2+e^{-x} } = \sqrt{(e^{x/2} + e^{-x/2})^2} = e^{x/2} + e^{-x/2}

Here's the complete work.
ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x})) <br /> = ln(x(e^{x/2} + e^{-x/2} - e^{x/2}))<br /> = ln(xe^{-x/2})<br /> = ln(\frac{x}{e^{x/2}})
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top