Simplifying terms of Ricci tensor

Safinaz
Messages
255
Reaction score
8
Homework Statement
Any help how to simplify these terms of Ricci tensor:
Relevant Equations
##
R_{\alpha\mu} R_{\gamma \nu} g^{\alpha \gamma} + R_{\mu \beta} R_{\nu \delta} g^{\beta \delta} + g^{\alpha \gamma} g^{\beta \delta} \left( R_{\alpha\beta} \frac{ \nabla_\gamma \delta \Gamma^\rho_ {~ \delta \rho} - \nabla_\rho \delta \Gamma^\rho_ {~ \gamma \delta} }{ \delta g^{\mu\nu} }
+ R_{\gamma\delta} \frac{ \nabla_\alpha \delta \Gamma^\rho_ {~ \beta \rho} - \nabla_\rho \delta \Gamma^\rho_ {~ \alpha \beta} }{ \delta g^{\mu\nu} } \right)
##
So that they become:

##
g^{\sigma \rho} \nabla_\sigma \nabla_\rho R ~g_{\mu\nu} + R ~R_{\mu\nu} - \nabla_\mu \nabla_\nu R
##
 
Physics news on Phys.org
I'm not of much help but I'm sure that those who might help would like to see what work you've done so far...
 
You’re staring at the “variation-of-Ricci” mess that always shows up when deriving the field eqs from an R2R^2R2–type action. The cure is three identities; once you use them in the right order, the whole block collapses to

gμν□R+R Rμν−∇μ∇νR.g_{\mu\nu}\Box R + R\,R_{\mu\nu} - \nabla_\mu\nabla_\nu R .gμν□R+RRμν−∇μ∇νR.
Here’s the minimal path.

1) Palatini + variation of the connection​

Palatini identity:

δRαβ=∇ρδΓραβ−∇βδΓραρ.\delta R_{\alpha\beta}=\nabla_\rho \delta\Gamma^{\rho}{}_{\alpha\beta}-\nabla_\beta \delta\Gamma^{\rho}{}_{\alpha\rho}.δRαβ=∇ρδΓραβ−∇βδΓραρ.
Metric variation of the Levi–Civita connection:

δΓραβ=12gρλ ⁣(∇αδgλβ+∇βδgλα−∇λδgαβ).\delta\Gamma^{\rho}{}_{\alpha\beta}=\tfrac12 g^{\rho\lambda}\!\left(\nabla_\alpha \delta g_{\lambda\beta}+\nabla_\beta \delta g_{\lambda\alpha}-\nabla_\lambda \delta g_{\alpha\beta}\right).δΓραβ=21gρλ(∇αδgλβ+∇βδgλα−∇λδgαβ).
Insert this in Palatini and simplify (use ∇γgρλ=0\nabla_\gamma g^{\rho\lambda}=0∇γgρλ=0). After a standard symmetrization you get the textbook result:

 δRαβ=12(∇ρ∇αδgρβ+∇ρ∇βδgρα−□ δgαβ−∇α∇βh) (h≡gρσδgρσ).\boxed{\,\delta R_{\alpha\beta}=\tfrac12\Big(\nabla_\rho\nabla_\alpha \delta g^\rho{}_\beta+\nabla_\rho\nabla_\beta \delta g^\rho{}_\alpha-\Box\,\delta g_{\alpha\beta}-\nabla_\alpha\nabla_\beta h\Big)\,}\qquad (h\equiv g^{\rho\sigma}\delta g_{\rho\sigma}).δRαβ=21(∇ρ∇αδgρβ+∇ρ∇βδgρα−□δgαβ−∇α∇βh)(h≡gρσδgρσ).
Equivalently, the “functional derivative” object you wrote (those ∇δΓ\nabla \delta\Gamma∇δΓ terms divided by δgμν\delta g^{\mu\nu}δgμν) is nothing but the kernel that maps δgμν\delta g^{\mu\nu}δgμν to δRαβ\delta R_{\alpha\beta}δRαβ above.

2) Vary​

The piece you posted is precisely the part linear in δRαβ\delta R_{\alpha\beta}δRαβ:

2 Rαβ gαγgβδ δRγδ.2\,R_{\alpha\beta}\,g^{\alpha\gamma}g^{\beta\delta}\,\delta R_{\gamma\delta}.2RαβgαγgβδδRγδ.
Now insert the boxed formula for δRγδ\delta R_{\gamma\delta}δRγδ, integrate by parts twice (or, since you’re effectively taking a functional derivative, move derivatives off δg\delta gδg onto RαβR_{\alpha\beta}Rαβ; throw away total divergences). You’ll produce derivatives of RαβR_{\alpha\beta}Rαβ.

Use the contracted Bianchi identity:

∇αRαβ=12 ∇βR,∇α∇βRαβ=12 □R.\nabla^\alpha R_{\alpha\beta}=\tfrac12\,\nabla_\beta R,\qquad\nabla^\alpha\nabla^\beta R_{\alpha\beta}=\tfrac12\,\Box R.∇αRαβ=21∇βR,∇α∇βRαβ=21□R.
After the dust settles, the “∇∇ δg\nabla\nabla\,\delta g∇∇δg” block yields

gμν□R−∇μ∇νR .\boxed{\ g_{\mu\nu}\Box R-\nabla_\mu\nabla_\nu R\ }. gμν□R−∇μ∇νR .

3) The algebraic (no-derivative) part​

The two “Ricci×Ricci” contractions at the front,

RαμRγνgαγ+RμβRνδgβδ,R_{\alpha\mu}R_{\gamma\nu}g^{\alpha\gamma}+R_{\mu\beta}R_{\nu\delta}g^{\beta\delta},RαμRγνgαγ+RμβRνδgβδ,
are the same term written twice:

RαμRαν+RμβRβν=2 RμαRαν.R_{\alpha\mu}R^{\alpha}{}_{\nu}+R_{\mu\beta}R^{\beta}{}_{\nu}=2\,R_{\mu}{}^{\alpha}R_{\alpha\nu}.RαμRαν+RμβRβν=2RμαRαν.
In the full variation of ∫ ⁣−g R2\int \! \sqrt{-g}\,R^2∫−gR2 this combines with the piece from δ(−g)\delta(\sqrt{-g})δ(−g) and δ(gαγgβδ)\delta(g^{\alpha\gamma}g^{\beta\delta})δ(gαγgβδ) to trade RμαRανR_\mu{}^\alpha R_{\alpha\nu}RμαRαν for R RμνR\,R_{\mu\nu}RRμν and −12gμνR2-\tfrac12 g_{\mu\nu}R^2−21gμνR2. Since your target line shows only the part that comes with δR\delta RδR, you keep just

R Rμν .\boxed{\ R\,R_{\mu\nu}\ }. RRμν .

Result (the bit you wanted)​

Collecting the derivative and algebraic pieces that come from the δRαβ\delta R_{\alpha\beta}δRαβ-block gives exactly

gμν □R  +  R Rμν  −  ∇μ∇νR .\boxed{\ g_{\mu\nu}\,\Box R \;+\; R\,R_{\mu\nu} \;-\; \nabla_\mu\nabla_\nu R\ }. gμν□R+RRμν−∇μ∇νR .
sanity check: for the R2R^2R2 Lagrangian one indeed gets
Hμν(R2)=2RRμν−12gμνR2−2∇μ∇νR+2gμν□RH_{\mu\nu}^{(R^2)}=2R R_{\mu\nu}-\tfrac12 g_{\mu\nu}R^2-2\nabla_\mu\nabla_\nu R+2 g_{\mu\nu}\Box RHμν(R2)=2RRμν−21gμνR2−2∇μ∇νR+2gμν□R;
your line is the “half” that comes from the δRαβ\delta R_{\alpha\beta}δRαβ part, as advertised.
If you want, I can write this out explicitly index-by-index with every integration-by-parts step, but the three boxes above are the whole trick.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top