Simplifying Trigonometric Expression and Solving Integral

  • Thread starter Thread starter holezch
  • Start date Start date
  • Tags Tags
    Integral
holezch
Messages
251
Reaction score
0

Homework Statement


\int sin^{2} u - cos^{2} u / \sqrt{sin^{4} u + cos^{4} }


Homework Equations


The Attempt at a Solution



\int sin^{2}(u) - cos^{2}(u) / \sqrt{sin^{4}(u) + cos^{4}(u)}
then
<br /> \sqrt{sin^{4} u + cos^{4}} <br /> = \sqrt{(sin^{2}(u) + cos^{2}(u))^{2} - sin^{2}(u)cos^{2}(u)} <br /> = \sqrt{1 - 2sin^{2}(u)cos^{2}(u)}<br /> = \sqrt{\frac{1+cos^{2}(2u)}{2}} <br /> OR \sqrt{\frac{2 - 2sin^{2}(2u)}{2}}that's as much as I could simplify.. any help would be appreciated, thanks
 
Last edited:
Physics news on Phys.org
Your numerator is pretty close to being cos(2u). Can you express the denominator in terms of sin(2u)? Then you should be able to see the substitution to use.
 
wow, the substitution has been right in front me! I've been blind..

so the denominator is \sqrt{\frac{2 - sin^{2}(2u)}{2}}

and the numerator is -cos(2u)

so I can use t = sin(2u)

thanks!
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top