Simplifying wrong or completely wrong?

  • Thread starter Thread starter iRaid
  • Start date Start date
  • Tags Tags
    Simplifying
iRaid
Messages
558
Reaction score
8

Homework Statement


Find dy/dx.
y=sin^{2}(3x-2)


Homework Equations





The Attempt at a Solution


Using the chain rule,
y=sin^{2}u
y'=2sinucosu
u=3x-2
u'=3

\frac{dy}{dx}=6sin(3x-2)cos(3x-2)

Answer is:
3sin(6x-4)


What am I missing here ?
 
Physics news on Phys.org
Your answer is correct, and so is the other answer you show. They are using the identity sin(2A) = 2sin(A)cos(A). In your problem A = 3x - 2.
 
The identity

sin2(u)=(1/2)[1-cos(2x)]
so
[sin2(u)]'=[(1/2)[1-cos(2x)]]'=sin(2u)u'
 
Ah, I remember that now, now I'll remember that identity, thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top