Simulating the Behavior of Rotating Fluids: CFD vs ALE

AI Thread Summary
The discussion centers on the dynamics of fluid behavior in a rotating basin influenced by gravity and centrifugal forces. When the basin is tilted, a torque is applied, affecting the fluid's equilibrium, resulting in complex interactions between the outer and inner fluid layers. The conservation of angular momentum plays a crucial role in determining how the fluid settles, with the outcome varying based on flow conditions like turbulence. The participants also inquire about effective simulation methods, comparing Computational Fluid Dynamics (CFD) and Arbitrary Lagrangian-Eulerian (ALE) approaches. Overall, the fluid's response to changes in rotation and tilt presents a challenging scenario influenced by multiple forces and conditions.
exophysix
Messages
2
Reaction score
0
If I were to rotate a basin of fluid at a given angular speed, I would have two acceleration components.. one gravity and one centrifugal. What would happen if I added gravity to both components of acceleration (from tilting the basin). The fluid should move to one side correct? But, what if I just speed the basin up? Would the fluid even itself out at an equilibrium point?

Thanks!
 
Physics news on Phys.org
Two acceleration components on what? The fluid?

The fluid in this drum has a body force due to gravity and also shear forces from friction with the wall of the basin. The relative strength of these two forces will dictate how the fluid settles in equilibrium. When the basin is level and spinning, the fluid has some steady-state angular momentum. This angular momentum will be conserved in the fluid until some torque acts on it. When you tilt the basin you are applying a torque, but this is applied at the boundary of the fluid and not the whole fluid. The result is a big mess where the outer parts of the fluid continue to rotate with the tilted basin, but the inner parts rotate as they did before.

Basically it's a very complicated question, and even the qualitative answer depends on the details of the experiment (i.e. turbulent v laminar flow).
 
mikeph said:
Two acceleration components on what? The fluid?

The fluid in this drum has a body force due to gravity and also shear forces from friction with the wall of the basin. The relative strength of these two forces will dictate how the fluid settles in equilibrium. When the basin is level and spinning, the fluid has some steady-state angular momentum. This angular momentum will be conserved in the fluid until some torque acts on it. When you tilt the basin you are applying a torque, but this is applied at the boundary of the fluid and not the whole fluid. The result is a big mess where the outer parts of the fluid continue to rotate with the tilted basin, but the inner parts rotate as they did before.

Basically it's a very complicated question, and even the qualitative answer depends on the details of the experiment (i.e. turbulent v laminar flow).

Thank you mike.

Do you know of a good way to simulate this behavior (CFD versus ALE) [by chance]?
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top