- 3,748
- 1,943
Freixas said:@PeterDonis: I like to work things out fully for myself, which takes time. I understand things better when I can crank through all the logic on my own.
I thought I had found an error in my work. This just told me my conclusions were wrong, but it didn't provide a solid understanding of why. Thus, I revisited the thread and re-read a number of your posts.
I realized I still didn't understand how BN could read A's clock as 1.8. Tracing through your comments, I think the problem starts here:
If I take this approach, I arrive at a logical contradiction. So I clearly still don't understand.
Let's look at things from A's frame only. Let's remove the infinite line of closely spaced B's and replace it with a line of B's that are spaced evenly 4 LY apart as measured by A. Traveling at 0.8c, A will expect to see a B pass by every 5 years. The math seems simple and unavoidable. Each time a B passes by and sees A, it should see that A's time is a multiple of 5 (if the first conjunction occurred at 0). I can't picture any other scenario that makes sense. We're are looking at things from A's view, but the event (and A's clock reading) is in all frames.
I'm not looking at things from B's frame at all. It shouldn't matter. A's viewpoint provides all the information I need. We don't care about B's clock anywhere, just about what A's clock says at conjunctions.
You tell me that the first trailing B (what you call BN) will see A's clock as reading 1.8 years at conjunction. I can't see how. Help!
This is really the heart of my objection. What follows is just details.
--------------------------------------------------------------------------------
Let me draw the clocks based on your statement about clock synchronization. I am going to add a line of A's, also spaced 4 LY apart as measured by A.
A . . . . A . . . . A . . . . A . . . . A
B . . . . B . . . . B . . . . B . . . . B
^-7.2 . .-5.4 . . .-3.6 . . .-1.8 . . . 0
^-5.4 . . .-3.6 . . .-1.8 . . . 0
-3.6 . . .-1.8 . . . 0
^-1.8 . . . 0
^0
The caret points to the corresponding B's view of each of A's clocks at B's time 0. The time listed under each A, is the time as perceived by the B with the caret. As I imagine movement in typical Western left-to-right fashion, the rightmost A is the one that we've been concerned with. The rightmost B is the "lead B" or B1. All times are for when the lead B is at time 0, so all B's perceive the lead A to have time 0. This is my interpretation of your statement.
The other times are what I think they would be so that B would perceive A's clocks advancing by 1.8 years as one B went to the next. If we advance this diagram by 3 years (B's time) or 5 years (A's time), the trailing B would say that the lead A's clock reads 1.8, which I believe to be impossible.
Here's the way I think things should like so that B sees a multiple of 5 at each conjunction. B also sees A's clocks advancing by 1.8 years during the trip:
A . . . . A . . . . A . . . . A . . . . A
B . . . . B . . . . B . . . . B . . . . B
^0 . . . 3.2 . . . 7.4 . . . 9.6 . . . 12.8
^0 . . . 3.2 . . . 7.4 . . . 9.6
^0 . . . 3.2 . . . 7.4
^0 . . . 3.2
^0
In this example, the last B would reach A (the lead A) in 4 * 3 = 12 B years (4 * 1.8 = 7.2 years A years from B's view) and A's clock would read 7.2 + 12.8 = 20.
In my diagram, when B's clocks are at time 0, each adjacent A's clock also reads 0. But the lead A's clock reads 0 only for the lead B.
I have no idea if this diagram is a representation of how things work. All I can say is that it satisfies these two constraints: A's clocks are a multiple of 5 at conjunctions and B's perceive A's clock as running at 0.6x (assuming I did the math right, always a concern).
Events according to A's clocks (white)
Events according to B's clocks (yellow)