Single Slit (Fraunhoffer) Diffraction Question

AI Thread Summary
The discussion centers on the relationship between two results of Fraunhofer diffraction: RESULT 1 for a rectangular aperture and RESULT 2 for a single slit. The user questions whether RESULT 1 can be simplified to RESULT 2 by reducing the height of the rectangular aperture to zero, which leads to the same diffraction pattern. They highlight a potential contradiction in a derivation of RESULT 2 that assumes an infinite height for the slit, allowing for simplification in integration. The user seeks clarification on the implications of these assumptions regarding the dimensions of the aperture and their effects on the diffraction pattern. The conversation emphasizes the nuances of mathematical modeling in diffraction theory.
hbal9604@usyd
Messages
6
Reaction score
0
hey quick question about Fraunhoffer diffraction:

RESTULT 1

for a rectanguar apperture, we have the following equation for irradiance I:


I = I(0)(sin(B)/B)^2(sin(A)/A)^2 = I(0)[sinc(B)]^2[sinc(A)]^2

where, B = bu/2; A = av/2
where b = apperture breadth (x-axis); a = apperture height (y-axis)
and u = ksin(theta_x) v = ksin(theta_y)

and where I(0) is the irradiance evaluated along the central axis between the apperture and the screen, ie at theta_x = 0, and theta_y = 0.

RESULT 2

Now, I also have the equation for single slit diffraction:

I = I(0)(sin(B)/B)^2 = I(0)[sinc(B)]^2

also here, B = bu/2;
where b = apperture breadth (x-axis);
and u = ksin(theta_x)

where I(0) is the irradiance evaluated along the central axis between the apperture and the screen, ie where theta_x = 0.

QUESTION:

RESULT 1 and 2 can be derived independently of each other using double intregral formulas. Now my question is as follows:

is it satisfactory to think of RESULT 1 reducing to RESULT 2 in the limit that (say) the height (y-axis dimension) of the rectuangular apperture approaches zero?

In this case, the apperture height, a ----> 0
thus A-----> 0
thus sinc(A)----> 1
thus (from RESULT 1) I----> I(0)(sin(B)/B)^2 x 1 = I(0)sinc(B)^2 as required.

This seems to make sense to me. and what I get is a result where by a single (infinitely thin) slit of length b in the x-dimenstion, produces a diffraction pattern on the screen in teh SAME dimension (ie the x-dimension).

WHY I ASK...is that in one form of the derivation of RESULT 2 for the single slit I have come across, the following is stated:

'consider a slit with width b and assume the hight is infinite'.

FYI: In this derivation, the width is still along the x-axis, and the height is along the y-axis.

the working then proceeds to claim that SINCE we have assumed the slit is infinitely high, we need not consider integrating across the y-variable, and so the integration problem is simplifed to a single integration from -b/2 to +b/2 in the x-variable. RESULT 2 is then achieved.

YOU MAY HAVE SEEN MY PROBLEM AT THIS POINT (or maybe I have missed the point):

(i) in the derivation I just related to you, we end up with RESULT 2, but we do so by applying the fraunhoffer double integral to a slit of finite width b (along the x-axis) and infinite height a (along the y-axis)

WHEREAS

(ii) when I make RESULT 1 reduce to RESULT 2, I do so by assuming that our slit has finite width b (along the x-axis) but ZERO hieght (a = 0) along the y-axis.

Could you please comment on my thoughts, and point out my error if one exists. THANK YOU!

N.B.

when I refer to the fraunhoffer double integral, I refer to the following:

Electric Field At point P on the Screen =

constant x {double integral across apperture of:}(e^-i(ux+vy))dxdy

where u and v are defined in the section called RESULT 1 above.
 
Science news on Phys.org
If I understand your post, going from a rectangular aperture to a slit means the dimension in one axis goes to *infinity*, and so the diffraction along that axis goes to a delta-function. If one dimension of the aperture goes to zero (a delta function), then the diffraction pattern becomes infinitely broad.

Or did I not read something correctly?
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top