Six more kinematics, worked out already with questions/doubts/wrong answers

  • Thread starter Thread starter clairez93
  • Start date Start date
  • Tags Tags
    Kinematics
AI Thread Summary
The discussion focuses on solving various kinematics problems, including the motion of a geosynchronous satellite, a swimmer navigating ocean currents, and the relative motion of a helicopter and a ship. Key points include the calculation of the satellite's speed at 3.08 * 10^3 m/s, the swimmer needing to swim at 49 degrees west of north to counteract a 3 km/h current, and the understanding that two bullets fired simultaneously will strike an inclined plane at the same time regardless of their masses. Additionally, participants seek clarification on concepts like relative velocity and the determination of acceleration from given equations. The thread emphasizes the importance of correctly interpreting problem statements and visualizing vector components for accurate solutions.
clairez93
Messages
113
Reaction score
0

Homework Statement



1. A geosynchronous satellite travels around the Earth once every 24 hours (thereby always staying above the same point on the Earth's surface). Such satellites are at a distance of 4.23*10^7 m from the center of teh earth. How fast is such a satellite moving with respect to the earth?

Answer: 3.08 * 10^3 m/s

2. A long distance swimmer is able tos wim through still water at 4 km/h. She wishes to try to swim from Port Angeles, WA due north to Victoria BC, a distance of 50 km. An ocean current flows through the Strait of Juan de Fuca from west to east at 3 km/h. In what direction should she swim to make the crossing along a straight line between the two cities?

a. 37 degrees west of north
b. 37 degrees east of north
c. 41 degrees west of north
d. 41 degrees east of north
e. 49 degrees west of north

Answer: e

3. The x and y coordinates of a particle in motion as functions of time, t, are given by:
x = 3t^{2} - 12t + 2
y = 2t^{3} - 3t^{2} - 12t - 4

The smallest magnitude of the acceleration is closest to:

a. 0
b. 6.0 m/s^2
c 8.5 m/s^2
d. 12 m/s^2
e. 13.4 m/s^2

Answer: b

4. Two bullets are fired simultaneously uphill parallel to an inclined plane. The bullets have different masses and different initial velocities. Which will strike the plane first?

a. the fastest one
b. the slowest one
c. the heaviest one
d. the lightest one
e. they strike the plane at the same time

Answer: e

5. A helicopter is approaching the deck of the ship on which the pilot wishes to land. The ship is moving at 2.9 m/s west with respect to the water, which is flowing 8.9 m/s east. The helicopter is moving at 14m/s west with respect to the air, and the wind is blowing 15 m/s east with respect to the ground. What is the speed and direction of the ship's motion relative to the helicopter?

Answer: 5 m/s east

6. The compass of an aircraft indicates that it is headed due east, and its airspeed indicator shows that it is moving through the air at 150 km/hr. After flying for 2 hours, the aircraft is 350 km east and 74 km south of its starting point. What is the magnitude and direction of the wind velocity?

Answer: 45 km/hr @ 55.95 degreees



Homework Equations



kinematics

The Attempt at a Solution



1. I worked this problem out and received the right answer, but I have a specific question for it. Here is the work:

v = \frac{2\pir}{T} = \frac{2\pi(4.23 x 10^{7}}{24 x 3600} = 3076.15

However, I was wondering, before I checked the answer, whether I ought to have taken the speed of revolution of the Earth into account or not? Obviously, by the answer, I shouldn't have, but I'd like to know why? What does it mean when it asks for a velocity with respect to something, in this case, Earth?

2. My vector diagram contains a vertical vector going north, which would be the straight line path. Above that is the vector pointing to the east, which is the current that flows 3 km/hr, and then the hypotenuse of this triangle is the 4 k/mhr vector of the swimmer. To calculate the angle between the vertical component and the hypotenuse, I used arc sin (3/4) to get a value of 48.5 degrees, which is the correct value, however, in my drawing, I think it ought to be east of north. You can see it in attachment #2.

3. I am not sure how to determine the smallest magnitude of the acceleration. Could someone provide a starting point?

4. I am not quite good with conceptual questions. Could someone help me understand why they will strike at the same time?

5. For this one I determined the speed of the ship by subtracting 8.9 m/s, the flowing water, from 2.9, the speed of the ship, to get 6. I then did the same with the helicopter, 15-14, to get 1. Both are in the same direction. I'm not sure how I should get the speed of the ship relative to the helicopter, whether to add these two values or to subtract them. Obviously, by the answer, subtract, but I do not quiet understand why. I am a little fuzzy on the relative velocity concept, I'm afraid.

6. This one I have absolutely no idea how to begin solving. Any tips?
 

Attachments

  • #2.jpg
    #2.jpg
    5 KB · Views: 803
Physics news on Phys.org
3) Find the x component of the acceleration by finding d^2(x )/(dt)^2.
Similarly find the y component of the acceleration.
You can find that x component of the acceleration is independent of time whereas the y component of acceleration depends on time t. Hence the minimum acceleration is the x component.
 
Last edited:
1) Good point. Question should have stated "with respect to centre of the earth" to be more precise. Clearly in this case you've done what they wanted

2) Exactly the same thing as your other thread. Pay attention to the directions in your vector diagram! You have to swim against the flow to counter it!

3) See post #2

4) Draw the problem out on paper, then tilt it such the incline is horizontal. Your initial velocities should now be horizontal too. Now, this is just a typical projectile motion question. Can you see the answer from this point onwards?

5) If you hadn't already realized, what you did initially was to find, separately, the speed of the boat and helicopter relative to the GROUND. Now since they both have a common reference (the ground), you subtract them to get their relative speed, yes?

6) Very similar to question 2. Plane flying east, wind blowing south, therefore...?
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top