Skew Symmetric Determinant Proof

jolt527
Messages
8
Reaction score
0
Hi all! I was working on some homework for the linear algebra section of my "Math Methods for Physicists" class and was studying skew symmetric matrices. There was a proof I saw on Wikipedia that proves that the determinant of a skew symmetric matrix is zero if the number of rows is an odd number.

det(A) = det(A^T) = det(-A) = (-1)^n*det(A)

This is followed up by, "Hence, det(A) = 0 when n is odd." The problem is that I don't understand the proof too well. I understand that the determinant of a matrix is equal to the determinant of its transpose. That means that the determinant of the negation of a matrix is equal to those as well (-A = A^T). Looks like the (-1)^n*det(A) means that multiplying each row by (-1) will produce the same result as the other derivations so far.

If my logic is sound up to this point, then I get it all, until the big leap to, "Hence, det(A) = 0 when n is odd." Could someone point out either a flaw in my previous logic, or help me to understand how they get to the idea that det(A) must be zero when n is odd? Thank you! :)
 
Physics news on Phys.org
Okay, my math skills must be low tonight, because I think I got it. :P If someone would confirm what I'm thinking, that'd be nice!

In the end we get that det(A) = (-1)^n*det(A). If n is odd, we get det(A) = -det(A), which is only possible when det(A) is zero. Does that sound right?
 
jolt527 said:
In the end we get that det(A) = (-1)^n*det(A). If n is odd, we get det(A) = -det(A), which is only possible when det(A) is zero. Does that sound right?
Pretty much sums it up.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top