alexfloo
- 192
- 0
Homework Statement
A metal bar with length L, mass m, and resistance R is placed on frictionless metal rails that are inclined at an angle \phi above the horizontal. The rails have negligible resistance. A uniform magnetic field of magnitude is directed downward in the figure B. The bar is released from rest and slides down the rails.
(In the diagram it can be seen that the bar divides a rectangle into two smaller rectangles. As the bar slides, one grows, and the other shrinks.)
What is the terminal speed of the bar?
Homework Equations
\cal{E}=IR
\cal{E}=-\frac{d\Phi_m}{dt}
The Attempt at a Solution
Effective gravity has magnitude
mg\sin\phi
The two wire loops formed by the bar have respective emfs
{\cal E}_{1}=-\frac{d\Phi_{1}}{dt}=-BLv
{\cal E}_{2}=-\frac{d\Phi_{2}}{dt}=BLv
Therefore, the current along the bar is
I=\frac{-{\cal E}_{1}+{\cal E}_{2}}{R}=\frac{2BLv}{R}
The negative sign appears because one loop runs clockwise and the other counterclockwise.
This creates a force
F=ILB=\frac{2B^{2}L^{2}}{R}v
and an effective force
\frac{2B^{2}L^{2}}{R}v\cos\phi
The two are in equilibrium when
\frac{2B^{2}L^{2}}{R}v = mg\tan\phi
v = \frac{Rmg\tan\phi}{2B^{2}L^{2}}
The online homework system says this is incorrect, and I can't fiqure out why.