Is w Constant in Damped Oscillations?

  • Thread starter Thread starter Shreya
  • Start date Start date
  • Tags Tags
    Damping Forces
AI Thread Summary
In damped oscillations, the ratio b/√(k*m) is significant as it indicates the level of damping, with small damping defined when this ratio is much less than 1. The discussion clarifies that the angular frequency w is affected by damping, expressed as w = √(k/m - b^2/4m^2). The impact of the damping coefficient b on w is determined by the term b^2/4km. Despite the exponential decay of the displacement x(t), the modified angular frequency w remains constant in damped oscillations. Understanding this relationship is crucial for analyzing the behavior of damped systems.
Shreya
Messages
187
Reaction score
64
Homework Statement
In my text, it is written that small damping means that b/√(k*m) is much less than 1


My question is , Why is this particular ratio chosen?
Please be kind to answer.
Relevant Equations
F (damping)=-bv
F(restoring)= -kx
w =√(k/m - b^2/4m^2)
My first intuition is that for small damping Fd<<Fr
 
Physics news on Phys.org
Shreya said:
Homework Statement:: In my text, it is written that small damping means that b/√(k*m) is much less than 1My question is , Why is this particular ratio chosen?
Please be kind to answer.
Relevant Equations:: F (damping)=-bv
F(restoring)= -kx
w =√(k/m - b/4m^2)

My first intuition is that for small damping Fd<<Fr
You mean w =√(k/m - b^2/4m^2), right?

The interesting question in regards to the behaviour is whether b much affects w.
Writing ##\omega=\sqrt{\frac km(1-\frac {b^2}{4km}})##, we can see that the strength of b's effect depends on ##\frac {b^2}{4km}##.
 
haruspex said:
You mean w =√(k/m - b^2/4m^2), right?
Yes, that was a typo, I have edited it.
haruspex said:
The interesting question in regards to the behaviour is whether b much affects w.
Writing ω=km(1−b24km), we can see that the strength of b's effect depends on
I understand now, Thanks a lot! 🙏
By the way, even though x(t) decreases exponentially, w is constant (with its new value) even in a damped oscillation, right?
 
Shreya said:
By the way, even though x(t) decreases exponentially, w is constant (with its new value) even in a damped oscillation, right?
Yes.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top