Small Signal Model for transistors

AI Thread Summary
The small-signal model is crucial for analyzing the AC characteristics of transistors around a biased point, allowing for easier calculations of gain and impedance in electronic circuits. It is applicable when the input signals are small enough not to alter the device's operating point, simplifying the analysis significantly. In contrast, the large-signal model is used for larger signal variations and accounts for the nonlinear behavior of transistors, which can complicate calculations. The small-signal model linearizes the transistor's characteristics, making it more manageable for design and analysis. Understanding when to use each model is essential for effective circuit design in practical applications.
nebbione
Messages
131
Reaction score
0
Hi everyone, at my university (Computer engineering) we are studying the small signal model, but i didn't understand the practical application, i mean, why and when should it be used ?

For example at home i usually make electronics circuits, so i wanted to know how can i use the small signal model in my experiments ?

And when to use the large signal model ?

Thank you,
 
Engineering news on Phys.org
The small-signal model tells you the AC characteristics around a biased point. It is used when you need the AC characteristics (gain, impedance) of the transistor so that you can calculate the AC gain or impedance of the circuit that incorporates that transistor.
 
And what's the difference between large signal model?
 
nebbione said:
And what's the difference between large signal model?

... a small signal model, which lends itself well to small signal design and analysis. ... charge control model, which is particularly well suited to analyze the large-signal transient behavior ...


http://ecee.colorado.edu/~bart/book/book/chapter5/ch5_6.htm
 
nebbione said:
And what's the difference between large signal model?

The issue is that it is VERY difficult to calculate things like gain, bandwidth, and distortion directly from first principles. You end up with Volterra series which are notoriously difficult to deal with.

By making some assumptions (the main one being the signal is small enough not to change the device's operating point) you can make the calculations MUCH easier, and also more insightful.

In practice you use the small-signal model whenever you can, and the large-signal model when you must.
 
nebbione said:
And what's the difference between large signal model?
The characteristic curves of a transistor are very nonlinear. Its β varies with IC, its VBE varies exponentially with IB, etc. The small signal model is a linear approximation that works well for small excursions around a fixedpoint, and allows much easier analysis & design. See below.

The best idea is to think of the diode's exponential curve. For small excursions around a point on that curve, we can represent the exponential's behaviour as a DC voltage source in series with a fixed resistor, we have linearised the characteristic. The resistor value needed? It's determined as being equal to the slope of the exponential at that operating point.

Suppose you see that your transistor's collector current is 100mA when its base current is 1mA. You'd probably say its β = 100. But then you notice that for a collector current of 115mA the base current needed is 1.3mA. So it seems β here is only about 90? But when designing for small changes, we say IC changed by 15mA when IB changed by 0.3mA, giving a small signal β = ΔIC / ΔIB = 50[/color]
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top