SO(3) Special Othorgonal Group

  • Thread starter Thread starter logarithmic
  • Start date Start date
  • Tags Tags
    Group So(3)
logarithmic
Messages
103
Reaction score
0
For the special orthogonal group SO(3), with G-set R^3, and the usual G-action, we choose x in R^3 not equal to 0. Then the stabilizer of x (set of all the transformations in SO(3) that doesn't change x) is all the rotations about the axis produced by x (and -x). Can someone explain why the stabilizer of x is isomorphic to SO(2)? The notes I have just writes this as if it should be obvious. Am I missing something? Also, just to make sure I'm understanding this right, is the geometric interpretation for SO(2) the group of all rotations by any angle in R^2?
 
Physics news on Phys.org
The set of rotations around an axis x in R^3 is isomorphic to the set of rotations in the plane orthogonal to x. And, yes, SO(2) is the set of rotations of a plane.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top