So-called Fundamental Theorem of Algebra

thelema418
Messages
131
Reaction score
4
This came up in one of my readings:

"Neither the so-called fundamental theorem [of algebra] itself nor its classical proof by the theory of functions of a complex variable is as highly esteemed as it was a generation ago, and the theorem seems to be on its way out of algebra to make room for something closer to what Kronecker imagined" (Bell, 1934, p. 605).

My schooling taught "the" fundamental theorem of algebra. What is different about Kronecker's treatment? What is Bell disputing when he says it is "so-called"?

Bell, E. T. (1934) The place of rigor in mathematics. The American Mathematical Monthly, 41(10), 599-607.
 
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top