What Is the Induced EMF in the Coil?

Ling2
Messages
4
Reaction score
0
A solenoid of length 45 cm has 340 turns of radius 2.2 cm. A tightly wound coil with 16 turns of radius 4.4 cm is at the center of the solenoid. The axes of the coil and solenoid coincide. Find the emf induced in the coil if the current in the solenoid varies according to I=4.6sin(50∏t)A.

Answer: __________cos(50∏t) mV

Comments:
I can't seem to find the correct answer for the magnetic field of the solenoid.
The formula I use is:
B=0.5μ0nI(sinθ2-sinθ1)
The area to use for all equations is the area of the solenoid since it is the area of magnetic field lines felt by the coil.
The flux, denoted ∅ is: ∅=BAcosσ and σ=0o, therefore ∅=BA
and the EMF=-N(d∅/dt)=-NA(dB/dt)

I really appreciate any help, thank you!
 
Physics news on Phys.org
B on the axis and at the centre of a 'long' solenoid is given by B = \mu_{o}nI where n = number of turns/length of solenoid.
 
Last edited:
Assuming the solenoid is long an using that formula, my answer is wrong. Is there anything missing to the comments I added for solving this problem?
 
Can you show the working for dB/dt?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top