lionely said:
Oh may I ask one more question? I think I got the answer but not sure if my method was correct.
Which problem are you asking about? If it's the first problem, you can do this in a couple of ways: by "washers" (disks with holes in them) or by cylindrical shells (sort of like the layers in an onion).
Either way should produce the correct answer, but often one way will be easier than the other, so it pays to be comfortable using both ways. Also, the advice given by iRaid to not memorize the integration formulas is good advice. However, you do need to know the formulas for the area of a circle and for the area of a rectangle, both of which are pretty simple.
To get the volume of a disk, it's just the area of the circle times the thickness of the disk, which will usually be either Δx or Δy.
To get the volume of a washer, find the volume of the outer disk, and subtract the volume of the inner disk (the hole).
To get the volume of a shell, you need the area of a rectangle times its thickness. One of the dimensions of the rectangle comes from the circumference of the cylindrical shell, which would be ##2\pi## times the radius of the shell. The length is just the length of the shell, and the thickness is either Δx or Δy.
It is
extremely important to draw a picture of the region that will be rotated, and as good a sketch of the solid of revolution as you can manage. If you don't draw these pictures, there's a very good chance that the integral you set up will not produce the correct answer.