Solution to quadratic equation doesn't look right

AI Thread Summary
The discussion centers around a physics problem involving a pitcher throwing a ball toward a wall 85 feet away, with an initial speed of 5 feet/second and an acceleration of 32 feet/sec². The initial setup of the quadratic equation to determine the time until the ball hits the wall is critiqued, as it misinterprets speed as distance. Participants highlight that after the ball is thrown, the only acceleration acting on it is due to gravity, which affects vertical motion, not horizontal. The problem is deemed unrealistic, with concerns raised about the ball's speed being slower than typical walking pace, suggesting it would not reach the wall. Overall, the issue lies in the incorrect application of physics principles in the problem setup.
hatelove
Messages
101
Reaction score
1

Homework Statement



A pitcher throws a ball towards a wall that's 85 feet away from him. The ball's initial speed is 5 feet/second, and the acceleration of the ball is 32 feet/sec^2. How long does the ball travel before hitting the wall?

Homework Equations



distance = rate * time

The Attempt at a Solution



So the speed of the ball I have as:

[t = time]

5 + 32t

Which I believe makes sense because the ball is initially traveling @ 5 ft/sec, and after 1 second, the ball is traveling 37 ft/sec, then after 2 seconds the ball is traveling @ 69 ft.sec, etc.

I assume we use d = rt (which is distance = rate * time).

So the total distance the ball travels is 85 feet which is equal to the total rate of 5 + 32t * time. The equation I set up like this:

85 = (5 + 32t) * t

I set up the quadratic like so:

32t^2 + 5t - 85 = 0

I solved it and got:

(1/64) * (sqrt(10905) - 5) which is approx. 1.55.

I worked it out to check, and 1.55 seconds is much too low for the value:

5 feet + (32 feet * 2 seconds) = 69 feet

So after 2 seconds, the ball has only traveled 69 feet, while the quadratic equation states that the ball has traveled 85 feet after 1.55 seconds.

What gives?
 
Physics news on Phys.org
hatelove said:
So the speed of the ball I have as:

[t = time]

5 + 32t

hatelove said:
5 feet + (32 feet * 2 seconds) = 69 feet

So after 2 seconds, the ball has only traveled 69 feet, while the quadratic equation states that the ball has traveled 85 feet after 1.55 seconds.

What gives?
You're forgetting that 5+32t represents speed, not distance.
 
hatelove said:
A pitcher throws a ball towards a wall that's 85 feet away from him. The ball's initial speed is 5 feet/second, and the acceleration of the ball is 32 feet/sec^2. How long does the ball travel before hitting the wall?
This sounds like a made-up problem that doesn't have much connection to reality. After the ball leaves the pitcher's hand, the only acceleration on it is due to gravity, which acts straight down. Maybe the ball happens to have a propellor or rocket motor attached? Is this the exact wording of the problem?
 
Because this is a two dimensional problem. you should break it into horizontal and vertical components. As Mark44 said there is an acceleration of -9.81 m/s^2 in the vertical direction and no acceleration in the horizontal direction.
 
HallsofIvy said:
Because this is a two dimensional problem. you should break it into horizontal and vertical components. As Mark44 said there is an acceleration of -9.81 m/s^2 in the vertical direction and no acceleration in the horizontal direction.

Or since he's using feet and seconds, an acceleration of about -32 ft/s^2 vertical and 0 horizontal.
 
hatelove said:
A pitcher throws a ball towards a wall that's 85 feet away from him. The ball's initial speed is 5 feet/second, and the acceleration of the ball is 32 feet/sec^2. How long does the ball travel before hitting the wall?
As I said before, this is really a flaky problem, with almost no grounding in reality. I still wonder if the OP is showing the correct statement for this problem.

Has anyone noticed that the ball's speed is 5 ft/sec? That works out to about 3.4 mi/hr. If I start walking toward the wall at the same time the ball is thrown, I'll get there first (I can walk faster than 3.4 mph).

Furthermore, I can't imagine any scenario in which the ball would actually get to the wall, inasmuch as it will fall ~4600 ft during its flight.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...

Similar threads

Back
Top