Solve 2xyy'=4x^2+3y^2 w/ Substitution

  • Thread starter Thread starter Mechdude
  • Start date Start date
  • Tags Tags
    Linear Transform
Mechdude
Messages
108
Reaction score
1
how do i transform this to linear
2xyy' = 4x^2 +3y^2
using substitution
 
Physics news on Phys.org
This can be written as
\frac{dy}{dx}= \frac{4x^2+ 3y^2}{2xy}= 2\frac{x}{y}= \frac{3}{2}\frac{y}{x}

Try the substitution u= y/x.
 
so if u=y/x would this be right? \frac{du}{dx}= \frac{-dy}{dx} \frac{1}{x^2}

you third equal sign should be a + sign i believe
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top