Solve a Laplace transform puzzle

davyyao
Messages
4
Reaction score
0
Hi~
I recently solve a Laplace transform problem as following
L[int{t,0}cosh(t'-1)U(t'-1)dt']=? U(t'-1) is the unit step function(=1 for t'>1, =zero otherwise)
According the standard Laplace formula :
(1)L[cosh(t-1)U(t-1)]=exp(-s)*s/(s^2-1);
(2)L(int{t,0}f(t')dt')=F(s)/s. where F(s)=L(f(t))

I conclude the answer to be:
exp(-s)/(s^2-1)

But from the direct integral formula:
L[int{t,0}cosh(t'-1)U(t'-1)dt']=L[sinh(t-1)]=(1/2)*(exp(-1)/(s-1)-exp(1)/(s+1)).

This two answers are not consistent!
I totally have no idea what's wrong with the two methods?

I believe the second method should be correct by basic definition of Laplace transformation.

Thanks very much!
 
Physics news on Phys.org
How did you find the direct integral (the step at the first equal sign)?
 
davyyao said:
Hi~
I recently solve a Laplace transform problem as following
L[int{t,0}cosh(t'-1)U(t'-1)dt']=? U(t'-1) is the unit step function(=1 for t'>1, =zero otherwise)
According the standard Laplace formula :
(1)L[cosh(t-1)U(t-1)]=exp(-s)*s/(s^2-1);
(2)L(int{t,0}f(t')dt')=F(s)/s. where F(s)=L(f(t))

I conclude the answer to be:
exp(-s)/(s^2-1)

But from the direct integral formula:
L[int{t,0}cosh(t'-1)U(t'-1)dt']=L[sinh(t-1)]=(1/2)*(exp(-1)/(s-1)-exp(1)/(s+1)).

This two answers are not consistent!
I totally have no idea what's wrong with the two methods?

I believe the second method should be correct by basic definition of Laplace transformation.

Thanks very much!

\int_0^t \cosh(t'-1) U(t'-1) \, dt' \neq \sinh(t-1)
because the integral vanishes if t < 1 but sinh(t-1) does not.
 
  • Like
Likes 1 person
\int_0^t cosh(t&#039;- 1)U(t&#039;-1)dt&#039;= \int_1^t cos(t&#039;- 1)dt&#039;
and with the substitution u= t'- 1, du= dt', when t'= 1, u= 0 and when t'= t, u= t- 1 so that becomes
\int_0^{t-1} cosh(u)du.
 
Thanks Ray Vickson and Hallsoflvy for nice answering.
I think I make mistake to deal with the unit step function in the integral form.
It clear now for me!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top