Solve Boolean Algebra: A \oplus B=C, C \oplus B=A

  • Thread starter Thread starter needhelp83
  • Start date Start date
AI Thread Summary
The discussion centers on solving the Boolean algebra expressions A ⊕ B = C, C ⊕ B = A, and A ⊕ C = B using substitution. The original poster attempts various substitutions and simplifications but expresses confusion about reaching the conclusion A = A. A participant points out a mistake in the simplification process, clarifying that the correct expression should be A\overline{B} + 0 + AB + 0 = A. This leads to the realization that A(¬B + B) = A simplifies to A = A, confirming the solution. The thread highlights the importance of careful substitution and simplification in Boolean algebra.
needhelp83
Messages
193
Reaction score
0
if A \oplus B=C, then C \oplus B=A, and A \oplus C=B (use substitution)

C \oplus B=A

C \overline{B} + \overline{C} B = A

(A \oplus B) \overline{B} + (\overline {A \oplus B}) B = A

(A \overline{B} + \overline {A} B ) \overline {B} + (AB+ \overline{A} \overline{B})B=A

A \overline{B} \overline {B} + \overline {A} B \overline{B} + ABB + \overline{A} \overline{B}B=A

AB + 0 + AB + 0 = A

AB = A

I don't know how to get A = A

Any help?
 
Last edited:
Physics news on Phys.org
needhelp83 said:
if A \oplus B=C, then C \oplus B=A, and A \oplus C=B (use substitution)

C \oplus B=A

C \overline{B} + \overline{C} B = A

(A \oplus B) \overline{B} + (\overline {A \oplus B}) B = A

(A \overline{B} + \overline {A} B ) \overline {B} + (AB+ \overline{A} \overline{B})B=A

A \overline{B} \overline {B} + \overline {A} B \overline{B} + ABB + \overline{A} \overline{B}B=A

AB + 0 + AB + 0 = A

AB = A

Am I doing the steps correctly?
 
Anybody know how to solve
 
needhelp83 said:
if A \oplus B=C, then C \oplus B=A, and A \oplus C=B (use substitution)

C \oplus B=A

C \overline{B} + \overline{C} B = A

(A \oplus B) \overline{B} + (\overline {A \oplus B}) B = A

(A \overline{B} + \overline {A} B ) \overline {B} + (AB+ \overline{A} \overline{B})B=A

A \overline{B} \overline {B} + \overline {A} B \overline{B} + ABB + \overline{A} \overline{B}B=A

AB + 0 + AB + 0 = A

AB = A

I don't know how to get A = A

Any help?

You made a mistake in line 6. You should have:
A\overline{B} + 0 + AB + 0 = A

A(\overline{B} + B) = A

A.1 = A

A = A
 
Thread 'Have I solved this structural engineering equation correctly?'
Hi all, I have a structural engineering book from 1979. I am trying to follow it as best as I can. I have come to a formula that calculates the rotations in radians at the rigid joint that requires an iterative procedure. This equation comes in the form of: $$ x_i = \frac {Q_ih_i + Q_{i+1}h_{i+1}}{4K} + \frac {C}{K}x_{i-1} + \frac {C}{K}x_{i+1} $$ Where: ## Q ## is the horizontal storey shear ## h ## is the storey height ## K = (6G_i + C_i + C_{i+1}) ## ## G = \frac {I_g}{h} ## ## C...
Back
Top