Solve Eigenvalue Problem for Displacement Operator D

  • Thread starter Thread starter quasar_4
  • Start date Start date
  • Tags Tags
    Operator
quasar_4
Messages
273
Reaction score
0

Homework Statement



The displacement operator D is defined by the equation D f(x) = f(x + a). Show that the eigenfunctions of D are of the form phi = exp(Bx)*g(x) where g(x+a) = g(x) and B is any complex number. What is the eigenvalue corresponding to phi?

Homework Equations



Postulates of quantum mechanics?
Physicist version of the eigenvalue problem?

The Attempt at a Solution



Unfortunately I'm used to tacking eigenvalue problems from a more mathematical standpoint, i.e., considering whether a linear operator is diagonalizable, finding the characteristic polynomial, checking dimensions of eigenspaces, etc. I'm completely new to QM and don't understand how the eigenvalue problem has changed (plus all the operators are hermitian, so don't we already know the thing is diagonalizable from spectral theory?). I think with this book's terminology, eigenfunction = eigenvector (the vectors are themselves functions, right?), but I'm still confused as to how we find the eigenvectors first and use them to obtain eigenvalues.

With the linear momentum operator, one can turn the eigenvalue problem into a simple ODE and solve for the eigenfunction, but I'm not sure what to do here. I'm not even sure how to start. Do you set this up as D phi(x) = phi(x +a) = f phi(x) and try to solve for phi? I'm so confused. Any help would be great!
 
Physics news on Phys.org
Well, I'd start by just checking that the given functions actually are eigenfunctions, from which you will get the eigenvalue for free.

The question I can't answer right away, is why these are all. You could try to show that they form a complete basis for the set of functions D acts on?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top