Solve for 2D Elastic Collision: Find θ & φ Angles

AI Thread Summary
In a 2D elastic collision problem involving two pucks on a frictionless air-hockey table, puck 1 (0.5 kg) moves at 4 m/s and collides with puck 2 (0.3 kg) initially at rest. The goal is to find the final speed of puck 2 and the angles θ and φ after the collision. The conservation of momentum equations for both x and y directions are set up, leading to two equations involving cosθ and sinθ. Participants discuss the need to correctly manipulate these equations, emphasizing the importance of using the trigonometric identity cos²θ + sin²θ = 1 to solve for the unknown angles. Clarifications are made regarding algebraic errors and the proper approach to isolate variables for solving the angles.
amanda.ka
Messages
46
Reaction score
0

Homework Statement


A 2D elastic collision:
Two pucks (masses m1 = 0.5 kg and m2 = 0.3 kg) collide on a frictionless air-hockey table. Puck 1 has an initial velocity of 4 m/s in the positive x direction and a final velocity of 2 m/s in an unknown direction, θ. Puck 2 is initially at rest. Find the final speed of puck 2 and the angles θ and φ.

I get stuck at the end of this problem when I have to use the two equations to solve for 2 unknown angles. If someone could show me how to do that last step that would be great. Thanks in advance!

Homework Equations

The Attempt at a Solution


Since the collision is elastic I found the final kinetic energy using Ei = Ef and it equals 4.47 m/s

Then conservation of the x and y components of total momentum:

X DIRECTION: Pi = Pf
m1v1 + m2v2i = m1v1 + m2v2f
(0.5)(4) = (0.5)(2cosθ) + (0.3)(4.47cosφ)
2 = cosθ + 1.341cosφ

Y DIRECTION: Pi = Pf
m1v1 + m2v2i = m1v1 + m2v2f
0 = (O.5)(2sinθ) -(0.3)(4.47sinφ)
0 = sinθ - 1.341sinφ
 
Physics news on Phys.org
Hint: cos2θ + sin2θ = 1

(Your work looks good so far.)
 
TSny said:
Hint: cos2θ + sin2θ = 1

(Your work looks good so far.)
So I solve the first equation for cosφ and the second equation for sinφ?
1.341cosφ = 2-cosθ
and
-1.341sinφ = sinθ

then square each term:
1.3412cos2φ = 22-cos2θ
and
-1.3412sin2φ = sin2θ

then I added them but I'm still a bit lost/don't know the next step :/

1.3412cos2φ + (-1.341)2sin2φ = 22-cos2θ + sin2θ
 
Take another look at (2-cosθ)2. It doesn't look right. Also, I thought it might have been a little simpler to solve for sinθ and cosθ, then square, then add the equations and then implement TSny's hint.
 
amanda.ka said:
1.341cosφ = 2-cosθ
and
-1.341sinφ = sinθ

then square each term:
1.3412cos2φ = 22-cos2θ
and
-1.3412sin2φ = sin2θ

Note that (2 - cosθ)2 ≠ 22-cos2θ. In general (a + b)2 ≠ a2 + b2.

In order to use the trig identity cos2θ + sin2θ = 1, you could solve the first equation for cosθ. You already have an expression for sinθ, except I believe you have a sign error in -1.341sinφ = sinθ.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top