e(ho0n3
- 1,349
- 0
[SOLVED] A Funky Integral
Let
f(t) =\left\{\begin{array}{lll}<br /> 0 &\mbox{ if }t < 0 \\<br /> 1 &\mbox{ if }0 \leq t \leq 1 \\<br /> 0 &\mbox{ if }t > 1<br /> \end{array}\right
I need a simplified version of g(t) shown below:
g(t) = \int_{-\infty}^\infty f(u) \cdot f(t - u) \, du
I divide the integral into the following sum:
g(t) = \int_{-\infty}^0 f(u) \cdot f(t - u) \, du + \int_{0}^1 f(u) \cdot f(t - u) \, du + \int_{1}^\infty f(u) \cdot f(t - u) \, du
f(u) in the first and third term is 0 according to the definition of f. Hence
g(t) = \int_0^1 f(t - u) \, du
Is this right? What do I do know? Should I consider the cases where t < 0, 0 \le t \le 1 and t > 0? Or should that be t - u?
Let
f(t) =\left\{\begin{array}{lll}<br /> 0 &\mbox{ if }t < 0 \\<br /> 1 &\mbox{ if }0 \leq t \leq 1 \\<br /> 0 &\mbox{ if }t > 1<br /> \end{array}\right
I need a simplified version of g(t) shown below:
g(t) = \int_{-\infty}^\infty f(u) \cdot f(t - u) \, du
I divide the integral into the following sum:
g(t) = \int_{-\infty}^0 f(u) \cdot f(t - u) \, du + \int_{0}^1 f(u) \cdot f(t - u) \, du + \int_{1}^\infty f(u) \cdot f(t - u) \, du
f(u) in the first and third term is 0 according to the definition of f. Hence
g(t) = \int_0^1 f(t - u) \, du
Is this right? What do I do know? Should I consider the cases where t < 0, 0 \le t \le 1 and t > 0? Or should that be t - u?