A Solve Gravitational Interferometer & Geodesics

Salah93
Messages
20
Reaction score
0
I was trying to solve this excercise:

D1rhS.png


Now I was able to find the eq. of geodetics (or directly by Christoffel formulas calculation or by the Lagrangian for a point particle). And I verified that such space constant coordinate point is a geodetic.

Now, for the second point I considered$$ds^2=0$$

to isolate the$$dt$$ and find the time difference between the two routes. But I don't know how to solve for a generic path of a light ray. So I considered that maybe the text wants a light ray traveling along x-axis and the second along y axis.

I checked in other sources and all people make the same, by considering a light ray along x-axis and then setting$$dy=dz=0$$
.

But when I substitute these in my geodesic equations it turns out that they are not true even at first order in A! So these people that consider a light ray traveling along x-axis, such as in an interferometer, are not considering a light geodesic. All of this if and only if my calculations are true.

So I know that if$$ds^2=0$$
I have a light geodesic. And so it should solve my eq. of geodesics. But if I restrain my motion on x-axis what I can say is that the$$ds^2=0$$
condition now is on a submanifold of my manifold. So, the light wave that I consider doesn't not move on a geodesic of the original manifold but on one of the x axis. This is the only thing that came in my mind.

Is there any way to say that I can set

$$dy=dz=0$$
without worring? And if I can't set it how can I solve the second point?

I want also to ask is there other geodesics that go from the 3d point (0,0,0) to (L,0,0)?
 
Physics news on Phys.org
I'm working beyond my knowledge here (very much a beginner), but if you put ##dy=0## and ##dz=0## into the above, you still have ##ds^2 = - dt^2 + (1+ A cos( k(z+t))dx^2## and if ##ds^2 = 0## for light, you get a relationship between ##dt## and ##dx##.

To the admins, I hope that doesn't constitute too much of an answer, I'm hoping to test my own rudimentary knowledge too. I've deliberately left out the final step I think.
 
  • Like
Likes Dale
I solved the excercise and made all the necessary calculations and obtained the correct results. What I asking is a more theoretical question, to justify what I did. If the question is not formulated well please tell me.
 
Salah93 said:
What I asking is a more theoretical question, to justify what I did.

You will need to show more of your work. In particular you should show explicitly what you did here:

Salah93 said:
when I substitute these in my geodesic equations it turns out that they are not true even at first order in A!
 
Ok, I write the equations that I obtain(one can use action variation with an affine parameter, or EL eq. with affine parameter or use directly geodesic eqs with affine parameter by first calculating Christoffel symbols):

$$\ddot{t}=\frac{Ak}{2}sin(k(z+t)) (\dot{x}^2-\dot{y}^2)$$

$$\ddot{t}=\frac{Ak \sin(k(z+t))}{1+Acos(k(z+t))} (\dot{z}+\dot{t})\dot{x}$$

$$\ddot{y}=-\frac{Ak \sin(k(z+t))}{1-Acos(k(z+t))} (\dot{z}+\dot{t})\dot{y}$$

$$\ddot{z}=-\frac{Ak}{2}sin(k(z+t)) (\dot{x}^2-\dot{y}^2)$$Now these eqs define a geodesic.

I know that taking $$ds^2=0$$ this defines a light geodesic(and I can use any monotone function to parametrize it). Now I can set freely $$dy=dz=0$$ and take a light ray that travels along x-axis form (0,0,0) to (L,0,0) and then obtain the result of the second point for this particular light ray.

My questions are:
1) if I substitute $$dy=dz=0$$ I correctly have the eq. for $$\ddot{y}$$ zero. But the ones for $$\ddot{t}$$, $$\ddot{x}$$ , $$\ddot{z}$$ are not zero(if I made calculations well). So or I made wrong calculations or I can't use these equations for the light ray.

2)I saw that all the books ,ex. Schultz for RG, that treat interference for light rays take directly I ray that travels along x or y-axis (with a gravitational wave propagating in the z direction). Now are there other light rays that can go from (0,0,0) to (L,0,0)?

I hope I posted better the question. Thank you
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top