Solve HCP Packing C/A Ratio: Geometry & 1.67 Explained

  • Thread starter Thread starter benndamann33
  • Start date Start date
  • Tags Tags
    Ratio
benndamann33
Messages
20
Reaction score
0
I'm trying to solve for the ideal c/a ratio of hcp packing. why doesn't c/2 =a/2, looks like they pass through the same amoutn of radius's so I'm not sure the geometry to use. Used this pic http://www.engr.ku.edu/~rhale/ae510/lecture2/sld013.htm but it is more confusing to me how 1.67 comes out. Help please?
 
Last edited by a moderator:
Physics news on Phys.org
Look at the middle picture in the link you provided.

In the c-direction, there is an extra layer of atoms (triangle) between the top and bottom layers (hexagonal). The a-length is the side of the hexagon, but also the distance among adjacent atoms in the 'basal' plane. The dimension 'a' is in the closest-packing direction. The packing is less efficient in the c-direction.
 
I understand what you're saying about the picutre now, but I don't understand what you're using to compare C and A. I know where a is and i know where c is but i don't know the other length of triangle built between them, so i'ts unclear to me as to what the link is between their length
Ben
 
It's not obvious.

The trick is in realizing that the middle plane of atoms occupy positions directly above the centroids of the triangles in the base plane. This follows directly from a symmetry argument.

1. Each basal plane has nearest neighbor atoms making equilateral triangles. So, a=2R (where R is the sphere radius).

2. Each atom at height c/2 above the basal plane is positioned directly above the centroid of the triangles in the base plane. For an equilatreral triangle, the distance from a vertex to the centroid is two-thirds the length of the median, and is hence (2/3)*(a\sqrt{3}/2) = a/\sqrt{3}.

3. Each atom in the base plane has a nearest neighbor in this middle plane. So, the distance from the corner atom in the base plane to the nearby atom in the mid-plane is 2R.

4. This distance can also be calculated from Pythagoras, giving:
4R^2 = a^2 = (a/\sqrt{3})^2 + (c/2)^2

That should get you home.
 
thank you I was feeling like an idiot that I couldn't girue this out, I'm glad it doesn't appear to really be a trivial process. I appreciate the help,
Ben
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top