3.141592654
- 85
- 0
Homework Statement
\int\frac{dx}{1+\sqrt[3]{x-2}}
Homework Equations
The answer is given: \frac{3}{2}(x-2)^\frac{3}{2}-3(x-2)^\frac{1}{3}+ln|1+(x-2)^\frac{1}{3}|+C
I have to get my answer to look just like this.
The Attempt at a Solution
u=x-2, du=dx
=\int\frac{dx}{1+\sqrt[3]{u}}
w=1+\sqrt[3]{u}
dw=\frac{du}{3u^\frac{2}{3}}
3u^\frac{2}{3}dw=du
(w-1)^2=u^\frac{2}{3}
3(w-1)^2dw=du
=3\int\frac{(w-1)^2dw}{w}
=3\int\frac{w^2-2w+1}{w}dw
=3\int\frac{w^2}{w}dw-3\int\frac{2w}{w}dw+3\int\frac{1}{w}dw
=3\int\(wdw-6\int\(dw+3\int\frac{dw}{w}
=\frac{3}{2}(w^2)-6w+3ln|w|+C
=\frac{3}{2}(1+\sqrt[3]{u})^2-6(1+\sqrt[3]{u})+3ln|1+\sqrt[3]{u}|+C
=\frac{3}{2}(1+\sqrt[3]{x-2})^2-6(1+\sqrt[3]{x-2})+3ln|1+\sqrt[3]{x-2}|+C
From here I don't know where to go to get the answer stated above or if I'm not on the right track.