Solve Integral: \int\frac{dx}{1+\sqrt[3]{x-2}}

  • Thread starter Thread starter 3.141592654
  • Start date Start date
  • Tags Tags
    Integral
3.141592654
Messages
85
Reaction score
0

Homework Statement



\int\frac{dx}{1+\sqrt[3]{x-2}}

Homework Equations



The answer is given: \frac{3}{2}(x-2)^\frac{3}{2}-3(x-2)^\frac{1}{3}+ln|1+(x-2)^\frac{1}{3}|+C

I have to get my answer to look just like this.

The Attempt at a Solution



u=x-2, du=dx

=\int\frac{dx}{1+\sqrt[3]{u}}

w=1+\sqrt[3]{u}

dw=\frac{du}{3u^\frac{2}{3}}

3u^\frac{2}{3}dw=du

(w-1)^2=u^\frac{2}{3}

3(w-1)^2dw=du

=3\int\frac{(w-1)^2dw}{w}

=3\int\frac{w^2-2w+1}{w}dw

=3\int\frac{w^2}{w}dw-3\int\frac{2w}{w}dw+3\int\frac{1}{w}dw

=3\int\(wdw-6\int\(dw+3\int\frac{dw}{w}

=\frac{3}{2}(w^2)-6w+3ln|w|+C

=\frac{3}{2}(1+\sqrt[3]{u})^2-6(1+\sqrt[3]{u})+3ln|1+\sqrt[3]{u}|+C

=\frac{3}{2}(1+\sqrt[3]{x-2})^2-6(1+\sqrt[3]{x-2})+3ln|1+\sqrt[3]{x-2}|+C

From here I don't know where to go to get the answer stated above or if I'm not on the right track.
 
Physics news on Phys.org
You are doing fine. Now, just multiply the first two terms out. You can throw the constants out, since you already have a '+C'. Now combine what's left.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top