3.141592654
- 85
- 0
Homework Statement
\int\frac{xdx}{3+\sqrt{x}}
Homework Equations
The answer is given: \frac{2}{3}x^\frac{3}{2}-3x+18\sqrt{x}-54ln(3+\sqrt{x})+C
The Attempt at a Solution
u=\sqrt{x}
u^2=x
2udu=dx
\int\frac{xdx}{3+\sqrt{x}} = 2\int\frac{(u^3)du}{3+u}
w=3+u
w-3=u
dw=du
=2\int\frac{(w-3)^3dw}{w}
=2\int\frac{(w^3-9w^2+27w-27)dw}{w}
=2\int\((w^2-9w+27-\frac{27}{w})dw
=2\int\(w^2dw-18\int\(wdw+54\int\(dw-54\int\frac{dw}{w}
=2\frac{w^3}{3}-18\frac{w^2}{2}+54w-54ln|w|+C
=\frac{2}{3}(3+u)^3-9(3+u)^2+54(3+u)-54ln|3+u|+C
=\frac{2}{3}(3+\sqrt{x})^3-9(3+\sqrt{x})^2+54(3+\sqrt{x})-54ln|3+\sqrt{x}|+C
I multiplied this out but terms didn't cancel. Any suggestions?