roam
- 1,265
- 12
1. Homework Statement
Find the antiderivative:
\int\frac{2x^3-5x^2+5x-12}{(x-1)^2(x^2+4)}
3. The Attempt at a Solution
Using Integration by Partial Fractions:
\int\frac{2x^3-5x^2+5x-12}{(x-1)^2(x^2+4)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{Cx+D}{(x^2+4)}
2x3-5x2+5x-12 = A(x-1)(x2+4)+B(x2+4)+(Cx+D)(x-1)2
Multiplying out:
= -4A+4Ax-Ax2+Ax3+Bx2+4B+Cx+D-2Cx2-2Dx-Cx3+Dx2
Collecting like terms:
2x3-5x2+5x-12 = x3(A-C)+x2(B-2C+D-A)+x(4A+C-2D) + (D+4B)
Equating corresponding coefficients gives
A-C = 2
B-2C+D-A = -5
4A+C-2D =5
D+4B-4A=-12
in the matrix form:
1, 0, -1, 0, 2
-1, 1, -2, 1, -5
4, 0, 1, -2, 5
-4, 4, 0, 1, -12
I used MATLAB to get the reduced-row echelon form:
rref=
1, 0, 0, 0, 27
0, 1, 0, 0, 8
0, 0, 1, 0, 25
0, 0, 0, 1, 64
Therefore, A=27, B=8, C= 25 and D=64 (?)
\int \frac{27}{(x-1)}+ \int \frac{8}{(x-1)^2}+ \int \frac{25x+64}{(x^2+4)}
= 27 Log(-1 + x)-8/(x-1)+32arctan(x/2)+25/2log(4+x2)
I'm not sure if this is the correct answer to this problem, because I tried solving it using mathematica and I got:
\frac{2}{(x-1)} + log(x-1) + (1/2) log (4+x^2)
I really appreciate it if someone could show me my mistakes. Thanks!
Find the antiderivative:
\int\frac{2x^3-5x^2+5x-12}{(x-1)^2(x^2+4)}
Homework Equations
3. The Attempt at a Solution
Using Integration by Partial Fractions:
\int\frac{2x^3-5x^2+5x-12}{(x-1)^2(x^2+4)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{Cx+D}{(x^2+4)}
2x3-5x2+5x-12 = A(x-1)(x2+4)+B(x2+4)+(Cx+D)(x-1)2
Multiplying out:
= -4A+4Ax-Ax2+Ax3+Bx2+4B+Cx+D-2Cx2-2Dx-Cx3+Dx2
Collecting like terms:
2x3-5x2+5x-12 = x3(A-C)+x2(B-2C+D-A)+x(4A+C-2D) + (D+4B)
Equating corresponding coefficients gives
A-C = 2
B-2C+D-A = -5
4A+C-2D =5
D+4B-4A=-12
in the matrix form:
1, 0, -1, 0, 2
-1, 1, -2, 1, -5
4, 0, 1, -2, 5
-4, 4, 0, 1, -12
I used MATLAB to get the reduced-row echelon form:
rref=
1, 0, 0, 0, 27
0, 1, 0, 0, 8
0, 0, 1, 0, 25
0, 0, 0, 1, 64
Therefore, A=27, B=8, C= 25 and D=64 (?)
\int \frac{27}{(x-1)}+ \int \frac{8}{(x-1)^2}+ \int \frac{25x+64}{(x^2+4)}
= 27 Log(-1 + x)-8/(x-1)+32arctan(x/2)+25/2log(4+x2)
I'm not sure if this is the correct answer to this problem, because I tried solving it using mathematica and I got:
\frac{2}{(x-1)} + log(x-1) + (1/2) log (4+x^2)
I really appreciate it if someone could show me my mistakes. Thanks!
Last edited: