SqueeSpleen
- 138
- 5
I have two questions:
I had to find the Laplace transform of:
t \cdot sin(t)
Not by definition, using a table of transforms and the properties.
I did:
sin(t) = i \cdot sinh(it) = i \cdot \frac{e^{t}}{2}-i \cdot \frac{e^{-t}}{2}
Then
t \cdot sin(t) = it \cdot \frac{e^{t}}{2}-it \cdot \frac{e^{-t}}{2}
And
t^{n}e^{-at}=\frac{n!}{(s+a)^{n+1}}
So
\frac{i}{2} t^{1}e^{-it}=\frac{i}{2} \frac{1}{(s+i)^{2}}=\frac{i}{2} \frac{1}{s^{2}+2si-1} and \frac{i}{2} t^{1}e^{it}=\frac{i}{2} \frac{1}{(s-i)^{2}}=\frac{i}{2} \frac{1}{s^{2}-2si-1}
\frac{i}{2} \frac{s^{2}-2si-1-(s^{2}+2si-1)}{(s^2+1)^2}=\frac{2s}{(s^2+1)^2}
I want to know other way of calculate this without using the definition, because I don't know if I'm meant to use complex numbers.
The other problem is:
f(t)=\frac{sin(t)}{t} if t \neq 0
f(t)=1 if t = 0
Find the Mac Laurin serie of the function and check that L\left\{f(t)\right\}=arctan(\frac{1}{s}) s >1
I find the following serie:
\sum_{n=0}^{\infty} (-1)^n (\frac{1}{s})^{2n+1}\frac{1}{2n+1}
But it diverges for s>1, so it's useless to my purpose.
And I had problems trying to compute a Taylor Serie of arctan(\frac{1}{s}), I don't know what point to use.
Sorry if I made some gramatical mistakes, I don't speak English very well.
I had to find the Laplace transform of:
t \cdot sin(t)
Not by definition, using a table of transforms and the properties.
I did:
sin(t) = i \cdot sinh(it) = i \cdot \frac{e^{t}}{2}-i \cdot \frac{e^{-t}}{2}
Then
t \cdot sin(t) = it \cdot \frac{e^{t}}{2}-it \cdot \frac{e^{-t}}{2}
And
t^{n}e^{-at}=\frac{n!}{(s+a)^{n+1}}
So
\frac{i}{2} t^{1}e^{-it}=\frac{i}{2} \frac{1}{(s+i)^{2}}=\frac{i}{2} \frac{1}{s^{2}+2si-1} and \frac{i}{2} t^{1}e^{it}=\frac{i}{2} \frac{1}{(s-i)^{2}}=\frac{i}{2} \frac{1}{s^{2}-2si-1}
\frac{i}{2} \frac{s^{2}-2si-1-(s^{2}+2si-1)}{(s^2+1)^2}=\frac{2s}{(s^2+1)^2}
I want to know other way of calculate this without using the definition, because I don't know if I'm meant to use complex numbers.
The other problem is:
f(t)=\frac{sin(t)}{t} if t \neq 0
f(t)=1 if t = 0
Find the Mac Laurin serie of the function and check that L\left\{f(t)\right\}=arctan(\frac{1}{s}) s >1
I find the following serie:
\sum_{n=0}^{\infty} (-1)^n (\frac{1}{s})^{2n+1}\frac{1}{2n+1}
But it diverges for s>1, so it's useless to my purpose.
And I had problems trying to compute a Taylor Serie of arctan(\frac{1}{s}), I don't know what point to use.
Sorry if I made some gramatical mistakes, I don't speak English very well.
Last edited: