Solve ODE Exact Equations: Initial Value Problem

  • Thread starter Thread starter newtomath
  • Start date Start date
  • Tags Tags
    Ode
newtomath
Messages
37
Reaction score
0
Can you guys point me in the right direction on the problem below?

Solve the given initial value problem and determine at least approx. where the solution is valid:

(2x-y)dx + (2y-x)dy= o, y(1)=3

So I have My =-1 and Nx= -1

x^2-xy+ h(y) => -x+h'(y) = 2y-x => h(y)= y^2

=> x^2 -xy+ y^2

where would I go from here to solve the initial value prob?
 
Physics news on Phys.org
You have the right idea but is written poorly and that is why you don't have an equation in your last step. After you have checked exactness you should arrange your work like this. You have an unknown function f(x,y) satisfying this exact differential and you know

fx(x,y) = 2x - y
(*) f(x,y) = x2 - xy + h(y)
Differentiating this with respect to y and using the equation:
-x + h'(y) = 2y - x
h'(y) = 2y
h(y) = y2 + C

Substitute his in for the h(y) in (*) above which gives

f(x,y) = x2 - xy + y2 + C

This is the function that satisfies df(x,y) = 0 so your solution is

x2 - xy + y2 + C = 0

Now use your initial conditions. Notice at each step of the writeup you have an equation with an = and two sides. No sloppy use of => symbol.
 
Thanks. I found c to be 7. But the answer in the text states y as = (x + sqrt(28-3x^2))/2. Do you have any idea how they manipulated into that?
 
C is -7, not 7. The text is correct. Use the quadratic formula and solve for y in the equation y2 - (x)y + (x2 - 7) = 0.

Your solution does not define a function; it is a formal solution (according to Spiegel's Applied Differential Equations) only because it satisfies the original differential equation. The way you have it now, (1, 3) and (1, -2) are both points on the curve: (1)2 - (1)(3) + (3)2 - 7 = 1 - 3 + 9 - 7 = 0 = 1 + 2 + 4 - 7 = (1)2 - (1)(-2) + (-2)2 - 7. The initial value problem states y(1) = 3 only, so take the positive branch.
 
Last edited:
got it now, thanks
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top