- #1
skrat
- 748
- 8
Homework Statement
Solve PDE ##\frac{\partial u}{\partial t}-k\frac{\partial^2 u}{\partial x^2}=0## for ##0\leq x \leq \pi ## and ##t\geq 0##.
Also ##\frac{\partial u}{\partial x}(0,t)=\frac{\partial u}{\partial t}(\pi ,t)=0## and ##u(x,0)=sin(x)##.
Homework Equations
The Attempt at a Solution
Differential operator ##L## for ##ku_{xx}=u_t## is symmetrical, therefore ##Lu=ku_{xx}=\lambda u##.
##ku_{xx}=\lambda u##
##ku_{xx}-\lambda u=0## so
##u(x)=Ae^{-\sqrt{\frac{\lambda}{k}}x}+Be^{\sqrt{\frac{\lambda}{k}}x}## and
##u(x)_x=-A\sqrt{\frac{\lambda}{k}} e^{-\sqrt{\frac{\lambda}{k}}x}+B\sqrt{\frac{\lambda}{k}} e^{\sqrt{\frac{\lambda}{k}}x}##
Using ##\frac{\partial u}{\partial x}(0,t)=0## gives me that ##A=B## and the second condition gives me:
##u(\pi )_x=\sqrt{\frac{\lambda}{k}}Ae^{-\sqrt{\frac{\lambda}{k}}\pi }(e^{2\sqrt{\frac{\lambda}{k}}\pi }-1)##
therefore
##2\sqrt{\frac{\lambda}{k}}\pi =2n\pi i## and finally ##\lambda =-n^2k##
So eigenfunctions of differential operator ##L## are :
##u(x)=Ae^{-\sqrt{\frac{\lambda}{k}}x}+Be^{\sqrt{\frac{\lambda}{k}}x}## where we already know that ##A=B## and inserting ##\lambda =-n^2k## leaves me with:
##u_n(x)=A_ncos(nx)##
IF everything so far is ok, than I shall continue:
##ku_{xx}=u_t##
##\sum_{n=0}^{\infty }k\lambda u(x)f(t)=\sum_{n=0}^{\infty }u(x){f}'(t)## so
##\frac{{f}'(t)}{f(t)}=\lambda k## and therefore
##f_n(t)=De^{-n^2k^2t}##So ##U(x,t)=\sum_{n=0}^{\infty }u(x)f(t)=\sum_{n=0}^{\infty }Acos(nx)e^{-n^2k^2t}##
Know I think I should somehow write that ##sin(x)## in ##u(x,0)=sin(x)## in terms of eigenfunctions of ##L## but something has to be wrong, because:
##<sin(x),cos(nx)>=<\sum_{n=0}^{\infty }A_ncos(nx),cos(kx)>## where the first scalar product is 0, which means what exactly? Where did I get it wrong?