null void
- 102
- 1
Homework Statement
\oint_C{(x^2 + 2y + sin x^2)dx + (x + y + cos y^2)dy}
the contour C formed by 3 curves:
C(x,y) = \begin{cases}x=0, \quad from (0,0) to (0,5)\\y = 5 - x^2,\quad from(0,5) to (2,1) \\ 4y = x^2, \quad from(2,1) to (0,0)\end{cases}
and the Stoke Theorem:
\oint_C \vec F \, d\vec r = \iint_S \, curl \, \vec F \, d\vec S \\= \iint_S \, curl \, \vec F \cdot \vec n \, dS
The Attempt at a Solution
So in this problem, can I say the vector field, F as follow?
\vec F = <x^2 + 2y + sin x^2 ,\,\, x + y + cos y^2, \,\, 0>
then
\oint_C \vec F \, d\vec r = \iint_S \, curl \, \vec F \, d\vec S \\ = \int_0^5 \int_\frac{x^2}{4}^{5-x^2} -1\, dy\, dx \\ = 27.0833
but probably there is something wrong in there, because the answer is 20/3
Last edited: