Solve T(y)-T(y+dy)=ug(dy) | Easier Method?

  • Thread starter Thread starter jayjackson
  • Start date Start date
  • Tags Tags
    Chain Tension
Click For Summary
SUMMARY

The equation T(y) - T(y+dy) = ug(dy) describes the tension at a point y along a vertically hanging chain of length L, where u represents mass per unit length and g is the acceleration due to gravity. To solve for T(y), one can interpret the equation as a differential change in tension, dT = -ug dy, which can be integrated to find the tension function. The simplest approach involves considering the mass of the chain segment below the point y, leading to an integral formulation for T(y).

PREREQUISITES
  • Understanding of differential equations
  • Knowledge of integration techniques
  • Familiarity with concepts of tension in physics
  • Basic principles of mechanics related to hanging chains
NEXT STEPS
  • Study integration techniques for solving differential equations
  • Explore the concept of tension in static equilibrium
  • Learn about the properties of hanging chains and their mass distribution
  • Investigate related problems involving forces and motion in mechanics
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators and anyone interested in solving problems related to tension in hanging chains.

jayjackson
Messages
2
Reaction score
0
Homework Statement
Find an expression for T(y) which is the tension at the point y along the chain.

Chain is length L, take the top of the chain hanging vertical to be 0, and the length from top to bottom be L. T(y) tension at point y down the chain. T(y+dy) tension at the point y+dy, which is below y. It has mass per unit length u. The section from T(y) down to T(y+dy) supports the weight ug(dy), which has mass u(dy) as g is just gravity. There is also a force 'f' supporting the chain from falling.

Using this information, find an expression for T(y).
Relevant Equations
T(y)-T(y+dy)=ug(dy)
T(y)-T(y+dy)=ug(dy) is what I have got. How would I solve this? Or is there a simpler method.
 
Physics news on Phys.org
jayjackson said:
Homework Statement:: Find an expression for T(y) which is the tension at the point y along the chain.

Chain is length L, take the top of the chain hanging vertical to be 0, and the length from top to bottom be L. T(y) tension at point y down the chain. T(y+dy) tension at the point y+dy, which is below y. It has mass per unit length u. The section from T(y) down to T(y+dy) supports the weight ug(dy), which has mass u(dy) as g is just gravity. There is also a force 'f' supporting the chain from falling.

Using this information, find an expression for T(y).
Relevant Equations:: T(y)-T(y+dy)=ug(dy)

T(y)-T(y+dy)=ug(dy) is what I have got. How would I solve this? Or is there a simpler method.
You haven’t provided the full problem statement, but I gather this just a chain hanging vertically.
The simplest way would be just to consider the mass of the chain below a given point. But from the equation you got you can easily take limits to get an integral.
 
haruspex said:
You haven’t provided the full problem statement, but I gather this just a chain hanging vertically.
The simplest way would be just to consider the mass of the chain below a given point. But from the equation you got you can easily take limits to get an integral.
im unsure on how to solve the T(y)-T(y+dy) equation. How do i go about it?
 
jayjackson said:
im unsure on how to solve the T(y)-T(y+dy) equation. How do i go about it?
T(y+dy)-T(y) is the change in T, which is written dT. So your equation is dT=-ug dy.
Do you know how to integrate?
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 27 ·
Replies
27
Views
5K
Replies
7
Views
2K
Replies
12
Views
1K
Replies
2
Views
1K
Replies
6
Views
1K
  • · Replies 15 ·
Replies
15
Views
6K