Solve the differential equation with constant coefficients

Fatima Hasan
Messages
315
Reaction score
14

Homework Statement



Capture.png


Homework Equations



gif.gif

gif.gif


The Attempt at a Solution


[/B]
gif.gif

Is my answer correct?
 

Attachments

  • Capture.png
    Capture.png
    3.2 KB · Views: 522
  • gif.gif
    gif.gif
    1.3 KB · Views: 485
  • gif.gif
    gif.gif
    340 bytes · Views: 505
  • gif.gif
    gif.gif
    3.7 KB · Views: 529
Physics news on Phys.org
How do you get √56? Shouldn't it be (√52)/4 = (√13)/2?
 
mjc123 said:
How do you get √56? Shouldn't it be (√52)/4 = (√13)/2?
gif.gif

Is it correct now ?
 

Attachments

  • gif.gif
    gif.gif
    3.8 KB · Views: 524
Looks OK to me.
 
Fatima Hasan said:
View attachment 234491
Is it correct now ?
1. In the future, please post questions about differential equations in the Calculus & Beyond section. I will move the ones you have posted in the Precalc section.
2. You don't need to ask us to check your work for these kinds of problems. Just substitute your solution in the original diff. equation.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top