Solve the Riddle: 4*12=6, 8*8=1, 5*6?

  • Thread starter Thread starter roeller
  • Start date Start date
  • Tags Tags
    Riddle
AI Thread Summary
The riddle involves interpreting multiplication in modular arithmetic, specifically mod 7. The calculations show that 4*12=6 and 8*8=1 when reduced modulo 7. However, the discussion reveals that other moduli, such as mod 3, can also yield valid results, leading to 5*6=0 mod 3. The preferred solution is found using mod 21, resulting in 5*6=9. Ultimately, the riddle's complexity arises from the choice of modulus, with 9 being supported as the best answer.
roeller
Messages
2
Reaction score
0
Hi there

I have a riddle here, i cannot solve. :cry:
Please help me. :shy:

If
4*12=6
and
8*8=1

what's 5*6?

Thank you in advance.
 
Mathematics news on Phys.org
2

(It's multiplication mod 7.)
 
Thanks! That's it!
 
Curiosity, what is the reasoning exactly?
 
devious gave his reasoning: it's multiplication modulo 7:

4*12= 48= 7*6+ 6 so 4*12= 6 mod 7
8* 8= 64= 7*9+ 1 so 8*8= 1 mod 7

then 5*6= 30= 4*7+ 2 so 5*6= 2 mod 7.

HOWEVER, that is not the only answer. If fact, that 12 in "4*12" as well as the 8 in "8*8" makes me suspicious of the multiplication being "mod 7". It is common (but not required) to reduce numbers to be less that the modulo number. (Strictly speaking the objects in "modulo arithmetic" are equivalence classes of integers. You can use any number in an equivalence class to "represent" it and it is common to use the smallest positive number.)

Saying 4*12= 6 (mod k) means 4*12= 48= nk+ 6 for some integer n. That is the same as nk= 42.
Saying 8*8= 1 (mod k) means 8*8= 64= mk+ 1 for some integer m. That is the same as mk= 63.
42 factors as 2*3*7 and 63 factors as 3*3*7.

It is the fact that 7 is a common factor (so 42= n(7) with n=6) that leads to the conclusion that 4*12= 6 (mod 7) and (63= m(7) with m= 9) 8*8= 1 (mod 7).

Of course, 3 is also a common factor: 42= n(3) with n= 14 and 63= m(3) with m= 21. 4*12= 48= 42+ 6= (14)(3)= 6 so 4*12= 6 (mod 3) and 8*8= 64= 63+ 1= (21)(3)+ 1 so 8*8= 1 (mod 3). Of course that "= 6 (mod 3)" looks a little strange since, as I said, we normally choose a representative less than the base. Of course, 5*6= 30= 3*10 so 5*6= 0 (mod 3).

My preference would be (mod 3*7) or (mod 21).
Since 4*12= 48= 42+ 6= 2(21)+ 6, 4*12= 6 (mod 21).
Since 8*8= 64= 63+ 1= 3(21)+ 1, 8*8= 1 (mod 21).

That gives 5*6= 30= 21+ 9 so 5*6= 9 (mod 21).

I would support 9 as the best answer.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
24
Views
2K
Replies
3
Views
1K
Replies
8
Views
3K
Replies
2
Views
2K
Replies
41
Views
5K
Replies
1
Views
1K
Replies
7
Views
3K
Back
Top