Solve the simultaneous congruence modulo equation

  • Thread starter Thread starter chwala
  • Start date Start date
Click For Summary
The discussion focuses on solving simultaneous congruences using the Extended Euclidean algorithm and the Chinese Remainder Theorem (CRT). A user shares their approach to finding the inverse of modulo arithmetic and derives the solution for the equation x ≡ 3 (mod 5) and x ≡ 4 (mod 7), ultimately concluding that y = 18. Other participants suggest that the CRT is a straightforward method for such problems when moduli are coprime. Additionally, there is a recommendation to avoid posting screenshots of external content and instead provide links for reference. Understanding the underlying concepts is emphasized as crucial for mastering these mathematical techniques.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
pure maths/ Extended euclidean algorithm
Find question and solution here;

1649480226718.png


1649480263030.png

The steps are clear...out of interest i decided to use the other equation; may i say that i underestimated the euclidean algorithm :biggrin: ...in trying to find the inverse of modulo arithmetic...of course we have the online calculator..but i always like understanding (indepth )on any math concept...some deep thinking on reverse substitution...My approach is as follows;

##x≡3 (mod5)##
##x= 5k+3##
##5k+3≡4(mod7)##
##k=(1)(5^{-1})(mod 7)##
now on using Extended Euclidean algorithm, it follows that,
##1=5-(7-5(1))(2)##
##1=5-(14-5(2))##
##1=5(3)-(7)(2)##
Therefore the inverse of ##5=3##, then we shall have
##k=(1)(3)(mod 7)##
##k=7n+3##
##x=5(7n+3)+3##
##x=35n+18##...any other easier approach highly appreciated.
 
Last edited:
Physics news on Phys.org
Let x = y(mod 35),
y<35
y=3 (mod 5)={3,8,13,18,23,28,33}
y=4(mod 7)={4,11,18,25,32}
So y=18.
 
anuttarasammyak said:
Let x = y(mod 35),
y<35
y=3 (mod 5)={3,8,13,18,23,28,33}
y=4(mod 7)={4,11,18,25,32}
So y=18.
correct ,yes but wondering if your working steps is acceptable. Cheers mate. ...you looked at a common 'remainder' to conclude on ##18##.
 
Not clear what you mean by "easier". Chinese remainder theorem (CRT) is as easy as it gets if the moduli are pairwise coprime. For more in depth analysis, study a proof for the CRT.

Also, would recommend not posting screenshots of other websites. Link it, instead.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...