Solve the simultaneous congruence modulo equation

  • Thread starter Thread starter chwala
  • Start date Start date
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
pure maths/ Extended euclidean algorithm
Find question and solution here;

1649480226718.png


1649480263030.png

The steps are clear...out of interest i decided to use the other equation; may i say that i underestimated the euclidean algorithm :biggrin: ...in trying to find the inverse of modulo arithmetic...of course we have the online calculator..but i always like understanding (indepth )on any math concept...some deep thinking on reverse substitution...My approach is as follows;

##x≡3 (mod5)##
##x= 5k+3##
##5k+3≡4(mod7)##
##k=(1)(5^{-1})(mod 7)##
now on using Extended Euclidean algorithm, it follows that,
##1=5-(7-5(1))(2)##
##1=5-(14-5(2))##
##1=5(3)-(7)(2)##
Therefore the inverse of ##5=3##, then we shall have
##k=(1)(3)(mod 7)##
##k=7n+3##
##x=5(7n+3)+3##
##x=35n+18##...any other easier approach highly appreciated.
 
Last edited:
Physics news on Phys.org
Let x = y(mod 35),
y<35
y=3 (mod 5)={3,8,13,18,23,28,33}
y=4(mod 7)={4,11,18,25,32}
So y=18.
 
anuttarasammyak said:
Let x = y(mod 35),
y<35
y=3 (mod 5)={3,8,13,18,23,28,33}
y=4(mod 7)={4,11,18,25,32}
So y=18.
correct ,yes but wondering if your working steps is acceptable. Cheers mate. ...you looked at a common 'remainder' to conclude on ##18##.
 
Not clear what you mean by "easier". Chinese remainder theorem (CRT) is as easy as it gets if the moduli are pairwise coprime. For more in depth analysis, study a proof for the CRT.

Also, would recommend not posting screenshots of other websites. Link it, instead.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top