Solve the simultaneous congruence modulo equation

  • Thread starter Thread starter chwala
  • Start date Start date
Click For Summary
The discussion focuses on solving simultaneous congruences using the Extended Euclidean algorithm and the Chinese Remainder Theorem (CRT). A user shares their approach to finding the inverse of modulo arithmetic and derives the solution for the equation x ≡ 3 (mod 5) and x ≡ 4 (mod 7), ultimately concluding that y = 18. Other participants suggest that the CRT is a straightforward method for such problems when moduli are coprime. Additionally, there is a recommendation to avoid posting screenshots of external content and instead provide links for reference. Understanding the underlying concepts is emphasized as crucial for mastering these mathematical techniques.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
pure maths/ Extended euclidean algorithm
Find question and solution here;

1649480226718.png


1649480263030.png

The steps are clear...out of interest i decided to use the other equation; may i say that i underestimated the euclidean algorithm :biggrin: ...in trying to find the inverse of modulo arithmetic...of course we have the online calculator..but i always like understanding (indepth )on any math concept...some deep thinking on reverse substitution...My approach is as follows;

##x≡3 (mod5)##
##x= 5k+3##
##5k+3≡4(mod7)##
##k=(1)(5^{-1})(mod 7)##
now on using Extended Euclidean algorithm, it follows that,
##1=5-(7-5(1))(2)##
##1=5-(14-5(2))##
##1=5(3)-(7)(2)##
Therefore the inverse of ##5=3##, then we shall have
##k=(1)(3)(mod 7)##
##k=7n+3##
##x=5(7n+3)+3##
##x=35n+18##...any other easier approach highly appreciated.
 
Last edited:
Physics news on Phys.org
Let x = y(mod 35),
y<35
y=3 (mod 5)={3,8,13,18,23,28,33}
y=4(mod 7)={4,11,18,25,32}
So y=18.
 
anuttarasammyak said:
Let x = y(mod 35),
y<35
y=3 (mod 5)={3,8,13,18,23,28,33}
y=4(mod 7)={4,11,18,25,32}
So y=18.
correct ,yes but wondering if your working steps is acceptable. Cheers mate. ...you looked at a common 'remainder' to conclude on ##18##.
 
Not clear what you mean by "easier". Chinese remainder theorem (CRT) is as easy as it gets if the moduli are pairwise coprime. For more in depth analysis, study a proof for the CRT.

Also, would recommend not posting screenshots of other websites. Link it, instead.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
12
Views
2K
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K