Solve Velocity: 423,000=5504v+4.37v^3

  • Thread starter Thread starter MeL82vin
  • Start date Start date
  • Tags Tags
    Velocity
AI Thread Summary
The equation 423,000=5504v+4.37v^3 is a cubic equation that requires solving for the variable v, which can be complex. A tutor used software to find the solution of approximately 36.9 m/s (133 km/h), but students are expected to calculate it manually. While there is a formula for cubic equations, it is more complicated than that for quadratics, making trial and error a practical approach. Iterative methods, such as Newton's Method, can also be employed for finding roots. Understanding the behavior of the function through graphing can aid in approximating the solution effectively.
MeL82vin
Messages
2
Reaction score
0

Homework Statement


423,000=5504v+4.37v^3
2. Questions
Could someone please advise on how to solve for velocity(v)? Our tutor solved the equation using equation solver software to get 36.9 m/s (133km/h) but he included it in our exam and wanted a manual calculation of the velocity... It's beyond me, I am just trying to gauge how difficult it is to obtain the answer as I find it unusual that he had to use software to get a value but expected us to calculate it manually.
 
Physics news on Phys.org
MeL82vin said:

Homework Statement


423,000=5504v+4.37v^3
2. Questions
Could someone please advise on how to solve for velocity(v)? Our tutor solved the equation using equation solver software to get 36.9 m/s (133km/h) but he included it in our exam and wanted a manual calculation of the velocity... It's beyond me, I am just trying to gauge how difficult it is to obtain the answer as I find it unusual that he had to use software to get a value but expected us to calculate it manually.
This is a cubic equation in v. There is a formula for calculating the roots of a cubic equation, but it is much more complicated than the quadratic formula for sloving quadratic equations.

https://en.wikipedia.org/wiki/Cubic_function

Rather than memorizing several pages of formulas, it's probably easier to use a trial and error method to find a root.
 
SteamKing said:
This is a cubic equation in v. There is a formula for calculating the roots of a cubic equation, but it is much more complicated than the quadratic formula for sloving quadratic equations.

https://en.wikipedia.org/wiki/Cubic_function

Rather than memorizing several pages of formulas, it's probably easier to use a trial and error method to find a root.
Now that you have mentioned "trial and error" I'm fairly sure that's the method he wanted us to use. It didn't seem so obvious at the time though! Hopefully it doesn't catch me out again, thanks for the help.
 
You could also apply an iterative method that will converge to a solution. There are many to choose from. Check out Newton's Method for the "classic" example. It requires a bit of calculus (one derivative). It helps if you have a programmable calculator.
 
let f(v)= 4.37v^3 + 5504v - 423000
f'(v)= 13.11v^2 + 5504 >0 for all v belong to R.

=> f is monotonically increasing

f''(v)=26.22v
=> f has a point of inflection at v=0

you can easily sketch the rough graph for f
now using the mid point concept
put v=0 -> f(0)<0
put v=100 --> f(100)>0
put v=50 --> f(50)>0
pt v=25 --> f(25)<0
put v= 37.5 --> f(37.5)>0
put v= 31.25 --> f(31.25)<0
put v= 34.375--> f(34.375)<0
put v= 35.9375 ---> f(35.975)<0
put v= 36.71875 --> f(36.71875)<0
put v= 37.109375 --> f(37.109365)>0
put v= 36.9140625 --> f(36.9140625) is nearly zero => approximate solution for v= 36.9
 
  • Like
Likes Anuran Pal
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top