Solved: Showing Dirac Lagrangian Commutes at Spacelike Separated Points

  • Thread starter Thread starter jdstokes
  • Start date Start date
jdstokes
Messages
520
Reaction score
1
[SOLVED] Mandl and Shaw 4.3

The question is to show that the charge current density operator s^\mu = - ec \bar{\psi}\gamma^\mu\psi for the Dirac Lagrangian commutes at spacelike separated points. Ie

[s^\mu(x),s^\nu(y)] = 0 for (x-y)^2 < 0.

By microcauality we have \{ \psi(x), \bar{\psi}(y) \} = 0.

The commutator is

e^2c^2( \bar{\psi}(x)\gamma^\mu\psi (x) \bar{\psi}(y)\gamma^\nu\psi(y)-\bar{\psi}(y)\gamma^\nu\psi(y) \bar{\psi}(x)\gamma^\mu\psi (x) )

I tried to evaluate this in index notation. The first term is

\left(\bar{\psi}(x)\gamma^\mu\psi (x) \bar{\psi}(y)\gamma^\nu\psi(y)\right)_{\alpha\beta} = \left(\bar{\psi}(x)\gamma^\mu\psi (x) \right)_{\alpha\epsilon}\left( \bar{\psi}(y)\gamma^\nu\psi(y)\right)_{\epsilon\beta} = \bar{\psi}_\alpha (x) (\gamma^\mu)_{\epsilon\gamma} \psi_\gamma (x) \bar{\psi}_\epsilon (y)(\gamma^\nu)_{\beta\delta}\psi_\delta(y)

=\bar{\psi}_\alpha(x) \psi_\gamma (x) \bar{\psi}_\epsilon(y)\psi_\delta (y)(\gamma^\mu)_{\epsilon\gamma} (\gamma^\nu)_{\beta\delta}.

Minus the second term is

\left(\bar{\psi}(y)\gamma^\nu\psi (y) \bar{\psi}(x)\gamma^\mu\psi(x)\right)_{\alpha\beta}.

If I simply expand this as \left(\bar{\psi}(y)\gamma^\nu\psi (y)\right)_{\alpha\epsilon}\left( \bar{\psi}(x)\gamma^\mu\psi(x)\right)_{\epsilon\beta} I get a different answer to the first term. What I would like to do is to equate this to

\left(\bar{\psi}(y)\gamma^\nu\psi (y)\right)_{\epsilon\beta}\left( \bar{\psi}(x)\gamma^\mu\psi(x)\right)_{\alpha\epsilon} and then use the anti-commutation relations to show this is the same as the first term.

If A and B are Hermitian and so is AB then (AB)_{\alpha\beta} = (AB)^\ast_{\beta\alpha} = a_{\beta\epsilon}^\ast b_{\epsilon\alpha}^\ast = a_{\epsilon\beta}b_{\alpha\epsilon}. But in my case the product of the two matrices is not Hermitian so I can't do that.
 
Physics news on Phys.org
Turned out to be something totally stupid. I was interpreting the current as quadruple of matrices when it is in fact a quadruple of complex numbers.
 


Ok,

[j^{\mu}, j^{\nu}] =0

where j^{\mu} =\overline{\psi}(x)\gamma^{\mu}\psi (x)

Is this true?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top