Solving 2nd Order ODEs: y^4 -3y'' -4y = 0

mj478
Messages
6
Reaction score
0
Hi. I am new to differential equations. This is probably pretty easy but I don't quite understand how to do it yet.

The equation is y^4 -3y'' -4y = 0.

I can figure out what class of equation it is. I can write it in the form y'' = F(y), but I am not really sure how to solve it.
 
Physics news on Phys.org
Actually I think the problem is y'''' - 3y'' -4y. But I am still not sure what to do.
 
mj478 said:
Actually I think the problem is y'''' - 3y'' -4y. But I am still not sure what to do.

Sure it is y'''' - 3y'' -4y = 0 because dasy to solve.
Solving y^4 - 3y'' -4y =0 is possible, but hard. It involves elliptic integral.
 
This is ODE with constant coefficients..

Suppose that the solution is y=e^rx, than solve it!

i find that r=2, r=-2, r=i, r=-i

which means that

complementary solution of eqn is y=c_1*e^2x + c_2*e^-2x + c_3(sinx) + c_4(cosx)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top